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1. Introduction. The purpose of this paper is to establish the follow-

ing theorem.

Theorem. Let X= {Xt :—»</< °° } be a real-valued stochastic

process with independent increments. Let pt be a a-finile measure on the

real line öl which has the property that for every ß>0 there exists Tß>0

such that whenever |X| ^Tß and — » <s^t< »,

(1.1) E exp(\[(X« - X.) - E(Xt - X,)]) g exp(ß | X | ß(s, t]).

Then for every function fELi(p)r\Lx(p) (over tft) for which ||/||i^l,

the random variable ff(t)d[Xt—EXt] is well defined as a limit-in-the-

mean of order 2,, and for every e>0 there exists a positive number p<\

(depending only on e) such that

(1.2) p\\ f f(t)d[Xt - EXt}\ > el ^ 2p1'H/H...

If f(s, t) is a real-valued function on (R X (R such that

/(*, •) E Li(u) r\ L„(u),   ||/(5, Ott» SS 1   and   \\f(s, -)||. = \/y(s)

then if the stochastic process { Y,: — oo <s < a>} is defined by

Y. = j f(s,t)d[Xt-EXt],

it will follow as an immediate consequence of the Theorem that for

every e>0 there exists 0<p<l such that

P[\ Y.\ >•] S2pTW.

Thus, our Theorem provides a useful probability bound for a large

class of stochastic processes derived from processes with independent

increments. In particular, if 5* is held fixed and x« denotes the set

characteristic function of the interval (s*, s], then taking
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tt     A X'(t)

p(s*, s]

we obtain

(1.3)      P[ | (X. - X.,) - E(X. - X.,) |  > tp(s*, s]] ¿ 2p"C.'i.

If p(s*, s]—>oo as 5—»oo, (1.3) yields a bound on the rate at which

the increments of the process converge to their expectations.

We will show in §3 that our Theorem is applicable to the Wiener

and Poisson processes and will derive the appropriate versions of

(1.3). We will also indicate how the Theorem implies a convergence

rate theorem for a generalized version of the law of large numbers for

independent random variables first given in [3].

2. Proof of the theorem. The theorem will be proved in two parts.

First, we will establish the existence of ff(t)d[Xt—EXt] as the limit-

in-the-mean of certain "natural" approximating sums. Inequality

1.2 will be derived in the second part of the proof.

Part 1 of proof. We first establish the following lemma.

Lemma. Let X be a random variable with EX = 0 and with the prop-

erty that for every ß > 0 there exists Tß>0 such that for | X | ¿ Tß,

(2.1) Ee*x¿el'RM.

Then there exists a number Kß > 0, depending on ß and Tß but not other-

wise on the distribution of X, such that

\2EX2 ¿ KßRI X| ,   for \\\ ¿ Tß.

Proof. From (2.1) it follows that for every ß>0 there exists es>0

such that for |X| á7>,

E^^l + (ß + tf)\\\ R.

Then, E(eXx+e~**) ¿2+2(ß+eß)\\\R for |X| ¿Tß and, since

-   (\x)2* (\x)2

to  (2k)\ 2

it follows that

\2EX2 ¿ A(ß + tß)R I XI ,

as was to be shown.

Without loss of generality we will assume E(Xt — X,)=0 for all

— oo<5^í<eo. Suppose fQLi(ji)r\LK(p.) and ||/j|i = l. Then there
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exists a sequence of step functions/„= 22* CmXm such that ||/n—/||i

—»0, ||/„||i = 1 and sup< | cni\ û\\f\\« for all n. Here, Xn¿ is the set char-

acteristic function of Ani = (<z„,,_i, a»,,-], where — oo=on,_«,< • • •

<a„,o<an,i< • • ■ <an,oo= °°, and c„¿ is the value of /„ on A„<. All

but a finite number of the cni can be taken equal to zero for each n.

If A = (a, b], let X(A)=Xt—Xa. For each n form the stochastic
integral

F» = j fn(t)dXt =   22 C„iX(Ani).

We will show that the sequence (Y„) is a Cauchy sequence in the

stochastic Lebesgue space £2.

Fix m and n and let A,- be the element with index i oí the partition

obtained by ordering the merged partition {Am,P\A„y: — oo ¿i,j¿ •» }.

Let c\m) and cf be the values of fm and /„ respectively on A,-. Then,

by the independent increments assumption

E(Ym - F„)2 = 22 feT - ¿YEx\Ai).
i

Let r = 211/11.0, and let

(m) (n)

Ci       — Ci
\i =-Tß   for fixed ß > 0.

r

Then, by Condition 1.1 and the lemma,

E(Y~- Yn)1 = - 22 XÍE^ÍA«)

^E |x.|m(a«)
r2

Kßr

2/Tsll

<m> <»)|      /A  X

C-     — c-    I p(Ai)

Mil.

Then, (F„) is Cauchy in £2 which implies the existence of F££2 such

that E(Y— Yn)2—>0. It is easily shown that F is independent of the

sequence (/„) tending to/, so it is proper to write Y=ff(t)dXt (see,

e.g., [2]).
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Part 2 of proof'. Fix e>0. By a well-known inequality [4, p. 157],
for allX^O,

P[± F„ > e] = p[± £ cniX(Ani) > el

á £exp|±X £cniZ(A»,) - Xel

= <rx« II Eexp[±\cniX(Ani)].
%

Set ß = e/2 and X = 7V|[/|| „. Then, | Xcni| á Tß and from Condition 1.1,

P[±Yn>e]^e-^exp{ß\\\\\fn\\i}

g (exr>(-Tßt/2)yW"«>.

Inequality (1.2) now follows with p = exp(—Tse/2) because the £2 con-

vergence of (Yn) implies P[±Yn>e]-+P[± ff(t)dX,>e] and because

of the inequality P[\X\>e]^P[X>e]+P[-X>e].

3. Applications of the Theorem. 1. If X is the Wiener process,

Xt: N(0, o2t), Condition (1.1) is satisfied with ¡x = tr2 X Lebesgue mea-

sure and Tß = 2ß. Then, for 0^j<i< », Inequality (1.3) becomes

P[\Xt- X,\  £ o-2(t - s)e] £ 2p'î('-«>.

This is comparable with the inequality given in [2, p. 392].

2. If X is a Poisson process, Xt — X,: <P(fi,,t), where p,,t=p(s, t] for

ac-finite measure^, then Condition (1.1) is satisfied with this measure

and Tß the root of largest modulus of the equation ex—X —1 =j8|X|.

It follows from Inequality (1.3) that for — oo <s<t< °°

P[\ (X, - X.) - ß„t\  > eM.,t] á 2p"-'.

3. Let n be counting measure on the integers and let Yn = Xn

—Xn-i. If fELi^i^L^Qx) is the doubly infinite sequence (a* )£._«,
then the following is an immediate corollary of our Theorem.

Corollary. Let ( Fn)"_ _ „ be an independent sequence of random vari-

ables such that EYn = 0 all n, and for every ß>0 there exists Tß>0 such

that for |X| uTß,

E exp(XF„) ^ expfjS | X | )   uniformly in n.

Let (ak)k_ _ «, be a sequence of real constants such that

(i)   £;.-. |a*| Sil,
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(ii) maxi|at| =M< ».

Then, S = 22"- - « a* Yk is well defined as a limit-in-the-mean of order 2

of its partial sums and for every e > 0 there exists a positive number p < 1

such that

P[\S\  >e]¿ 2p1'".

This theorem generalizes a convergence rate result for the law of large

numbers originally established by Cramer [l].

A slightly stronger version of this theorem was proved in [3].
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