A HÖLDER TYPE INEQUALITY FOR SYMMETRIC MATRICES WITH NONNEGATIVE ENTRIES

G. R. BLAKLEY AND PRABIR ROY

The element $\mathbf{w} = (w_1, w_2, \cdots, w_n)$ of the *n*-dimensional real euclidean vector space R_n is nonnegative if $0 \le w_j$ for each j. If $1 \le k \le n$ then $\mathbf{w}(k) = (w(k)_1, w(k)_2, \cdots, w(k)_{n-1}) \in R_{n-1}$ is defined by setting $w(k)_i = w_i$ if $1 \le i < k$, $w(k)_i = w_{i+1}$ if $k \le i < n$. The real n by n matrix $S = (s_{ij})$ is nonnegative if $0 \le s_{ij}$ for each i, j. If $1 \le k \le n$ let S(k) be the n-1 by n-1 matrix obtained by deleting the kth row and kth column of S. W_n is the boundary of the nonnegative cone in R_n and $U_n = \{u \in R_n : (u, u) = 1\}$ is the unit sphere.

THEOREM. If S is a nonnegative symmetric n by n matrix, $u \in U_n$ is nonnegative and k is a positive integer then $(u, Su)^k \leq (u, S^ku)$. If k > 1 equality holds if and only if u is a characteristic vector of S or $(u, S^ku) = 0$.

PROOF. There is no loss of generality in ignoring trivial cases and assuming that k>1, n>1, that $|\lambda| \leq 1$ for each characteristic value λ of S and that there is a characteristic value λ^* of S for which $|\lambda^*| = 1$. There is thus a nonnegative characteristic n-vector $v \in U_n$ of S whose corresponding characteristic value λ is 1 [1, p. 80]. Now proceed by induction on n.

If $w \in W_n \cap U_n$ there is some j such that $w(j) \in U_{n-1}$. If

$$(w(j), S(j)w(j))^k < (w(j), S(j)^kw(j))$$

then

$$(w, Sw)^k = (w(j), S(j)w(j))^k < (w(j), S(j)^kw(j)) \le (w, S^kw).$$

If, on the other hand, $0 < (w(j), S(j)w(j))^k = (w(j), S(j)^k w(j))$ then w(j) is, as a consequence of the induction hypothesis, a characteristic (n-1)-vector of S(j) and there is some $\lambda > 0$ such that $S(j)w(j) = \lambda w(j)$. Hence $Sw = \lambda w + p$, where p is a nonnegative n-vector for which (p, w) = 0. If w is not a characteristic vector of S then (p, p) > 0 and it is easy to verify, using the symmetry of S, that

$$(w, S^k w) \ge \lambda^k + \lambda^{k-2}(w, Sp) = \lambda^k + \lambda^{k-2}(p, p) > \lambda^k = (w, Sw)^k.$$

Thus the truth of the theorem in the (n-1)-dimensional case entails its truth for vectors in W_n .

Received by the editors November 2, 1963 and, in revised form, October 5, 1964.

Suppose the nonnegative vector $u \in U_n \sim W_n$ is not a characteristic vector of S. Let $m \in U_n$ be a nonnegative characteristic vector of S with characteristic value 1 and let q be the unique element of U_n orthogonal to m such that u is between q and m in the sense that there is some η_0 , $0 < \eta_0 < 1$, for which $u = (1 - \eta_0^2)^{1/2} m + \eta_0 q$. Let $\alpha = (q, S^k q) - 1$, $\beta = (q, Sq) - 1$. Notice that $\beta < 0$, for otherwise it would follow from the normalization of S that q would be a characteristic vector of S with characteristic value 1, whence so would u, contrary to assumption. There is some $u \in W_n \cap U_n$ which lies between u and q, that is there is some $\eta_1, \eta_0 < \eta_1 \le 1$, such that $(1 - \eta_1^2)^{1/2} m + \eta_1 q = w$.

Let $f(\lambda) = \lambda^k - \lambda \alpha / \beta - 1 + \alpha / \beta$ for each real λ . Then

$$f(1) = (m, Sm)^{k} - (m, S^{k}m) = 0,$$

$$f(1 + \eta_{0}^{2}\beta) = (u, Su)^{k} - (u, S^{k}u), \text{ and}$$

$$f(1 + \eta_{1}^{2}\beta) = (w, Sw)^{k} - (w, S^{k}w) \le 0$$

as a consequence of the symmetry of S. Since $0 < 1 + \eta_1^2 \beta < 1 + \eta_0^2 \beta < 1$ and f is a strictly convex [2, p. 75] function of a positive argument strict inequality holds at u.

REFERENCES

- 1. F. R. Gantmacher, Applications of the theory of matrices, Interscience, New York, 1959.
- 2. G. H. Hardy, J. E. Littlewood and G. Polya, *Inequalities*, Cambridge Univ. Press, Cambridge, 1952.

University of Illinois and University of Wisconsin