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The element w = (wi, Wi, ■ • • , wn) of the »-dimensional real

euclidean vector space Rn is nonnegative if O^w,- for each j. If

l^feg» then w(k) = (w(k)i, w(k)2, • ■ • , w(k)n-i)GRn-i is defined by

setting w(k)i = Wi if i^i<k, w(k)i = wi+i if k^i<n. The real » by n

matrix S = (s,-,-) is nonnegative if 0 g Sy for each i, j. If 1 ̂  k á » let

S(fe) be the « — 1 by n — 1 matrix obtained by deleting the feth row

and Jfeth column of S. Wn is the boundary of the nonnegative cone in

Rn and Un= {u(E.Rn'- (u( u) = 1} is the unit sphere.

Theorem. If S is a nonnegative symmetric n by n matrix, ttÇzUn is

nonnegative and k is a positive integer then (u, Su)k á (u, Sku). If k > 1

equality holds if and only if u is a characteristic vector of S or (u, Sku)
= 0.

Proof. There is no loss of generality in ignoring trivial cases and

assuming that k>l, »>1, that |X| ^1 for each characteristic value

X of S and that there is a characteristic value X* of S for which

|X*| = 1. There is thus a nonnegative characteristic »-vector v£ U„

of S whose corresponding characteristic value X is 1 [l, p. 80]. Now

proceed by induction on ».

If wQ.Wnr\Un there is some j such that w(j)£î7n_i. If

(w(i), S{j)w{j)Y < (w(J), SU)*w(S))

then

(w, Sw)* = (w(j), S{j)w(j))" < (w(j), S(f)*w(j)) g (w, S*w).

If, on the other hand, 0<(w(j), S(j)w(j))k = (w(j), S(/)*w0')) then

w(J) is, as a consequence of the induction hypothesis, a characteristic

(» —l)-vector of S(j) and there is some X>0 such that S(j)w(j)

=\w(j). Hence Sw=~Kw+p, where p is a nonnegative «-vector for

which (p, w) =0. If w is not a characteristic vector of S then (p,p) >0

and it is easy to verify, using the symmetry of S, that

(w, Skw) ^ X* + X«-2(w, Sp) = X* + X*-2(p, p) > X* = (w, Sw)".

Thus the truth of the theorem in the (w —1) -dimensional case entails

its truth for vectors in W„.
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Suppose the nonnegative vector uG Un~Wn is not a characteristic

vector of S. Let m G Un be a nonnegative characteristic vector of S

with characteristic value 1 and let q be the unique element of Un

orthogonal to m such that u is between q and m in the sense that there

is some 17o, 0<rj0<l,for which u = (l—77o)1/2/n+i;oQ. Let <* = (<?, Skq)

— 1, ß = (q, Sq) — l. Notice that j3<0, for otherwise it would follow

from the normalization of S that q would be a characteristic vector

of S with characteristic value 1, whence so would u, contrary to

assumption. There is some wG^H Un which lies between u and q,

that is there is some tj\, r)0<r)i^l, such that (1—7/i)1/2m+77ig=w.

Let/(X) =\k-Xa/ß-l+a/ß for each real X. Then

/(l) = (m, Sm)k - (m, S"m) = 0,

/(l + ,is) = (a, Su)» - (a, S*u),   and

/(l + ,fc) = (w, Sw)* - (w, S*w) g 0

as a consequence of the symmetry of S. Since 0 < 1 +7??j3 < 1 +rj$ < 1

and/ is a strictly convex [2, p. 75] function of a positive argument

strict inequality holds at u.
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