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Introduction. L. Bieberbach in two fundamental papers [2], [3]

established the fundamental theorems for the crystallographic groups

or Raumgruppen. We propose in this paper to give an almost com-

pletely self-contained account of these fundamental facts. We will

use only the elementary theory of groups, matrices and polynomials

from algebra, the basic geometry of euclidean space and the most

elementary topological considerations. At one point we will need the

exponential mapping for Lie matrix groups for which various ele-

mentary accounts are available.

I would like to thank M. Rosenlicht and P. Fong for useful con-

versations.

1. Definition of crystallographic groups. Let En denote the w-

dimensional euclidean space and let R(n) denote the group of rigid

motions of £". Then let 0 be a point in En. The subgroup of R(n)

leaving 0 fixed is called the orthogonal group and we will denote it by

0(n). Let R" be the subgroup of R(n) consisting of pure translations.

Then there are two facts which should be recalled: First, Rn may be

identified with En under the map rERn goes into r(0). Secondly, Rn

is a normal subgroup of R(n), 0(n)f~\Rn is empty and every element

of R(n) can be uniquely represented in the form gt, where gEO(n)

and tERn. These last three conditions are abbreviated by writing

R(n)=0(n)-R\
A subgroup rC^W is called a crystallographic group if the fol-

lowing two conditions are satisfied:

1. H71, • • • ,7«, • ■ • is a sequence of elements from T and xEE",

then the sequence 7,2c, * = 1, 2, • • • , is Cauchy if and only if there

exists N>0 such that 7<=7at for all i> N.

2. There exists a compact subset of En, say F, such that for every

xEEn there exists 7(ET with the property that y(x) E F.

These two conditions are slightly awkward to work with. The fol-

lowing theorem gives a more convenient formulation of the crystal-

lographic groups.

Received by the editors February 17, 1964.
1 During part of the time this paper was being prepared, the author received sup-
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Theorem 1. A necessary and sufficient condition for a subgroup of

R(n) to be a crystallographic group is that T is a discrete subset of R(n)

and R(n)/T is compact in the quotient topology.

Proof. We will prove this theorem by means of the following two

propositions.

(A) A necessary and sufficient condition for a subgroup T of R(n)

to act on En without accumulation points (i.e., so as to satisfy condi-

tion (1) of the definition of crystallographic groups) is that T be a

discrete subset of R(n).

For let T be a discrete subgroup of R(n) and assume there exist

xoQE" and 7<£r, i = l, • • ■ , such that ji(x0) is Cauchy. Further,

let ¿o£P" be such that to(0)=x0. Then consider yit0QR(n). Now

li = (gi, h) and

7.Í0 = (gi, ad (g,)to + ti).2

Since yi(x0) is Cauchy and is exactly (ad(g¿)í0+¿¿)(0), we have that

&d(gi)t0+ti is a Cauchy sequence in P". Since 0(n) is compact, we

can find a subsequence of the g, which is Cauchy. Hence the sequence

7</o is Cauchy. But R(n)—>P(w) obtained by right multiplication by

io is a homeomorphism and, hence, 7,- must be Cauchy. Hence it

must be trivial from some point on and we have proven our first

assertion.

Let T CP(») operate without accumulation points on E". Assume

7,£r is a Cauchy sequence and 7,= (g,-, U). We must have, since

R(n) is topologically 0(n)XRn, that g¿ and í¿ are both Cauchy se-

quences. Hence /¿(0) =7<(0) must be Cauchy. This proves (A).

(B) A necessary and sufficient condition for a subgroup T of R(n)

to have a compact fundamental domain (i.e., satisfy (2) in the defini-

tion of crystallographic group) is that R(n)/T be compact.

Proof. It is trivial to verify that T has a compact fundamental

domain is equivalent to En/T, in the quotient topology, shall be com-

pact. Now there is a well-defined continuous mapping of R(n)/T

into En/T obtained by identifying two points of R(n) that differ by

an element of 0(n) acting to the left. Hence, if R(n)/T is compact,

En/T is compact.

But R(n)/T is compact if there exists F*QR(n) such that F* is

compact and every element of R(n) differs from an element of F* by

a multiple of T. Clearly, we may choose F* — 0(n) X F where P is

compact subset of P". Assuming that T acts with compact funda-

* We are using homogeneous coordinates and the multiplication is given by

(ft, <i)(ft, <«) = (&&, ad(g,)í¡.-Bi).



1232 LOUIS AUSLANDER [December

mental domain on En gives an F in En which may be identified with

F in Rn by the standard identification of Rn and En. The assertion

is then trivially verified.

2. Neighborhoods of the identity in 0(n). In this section we will

establish certain elementary properties of the orthogonal group 0(n).

Let e always denote the identity element of 0(n). Some of this mate-

rial has already appeared in print in [l ] and is included for complete-

ness of exposition.

Lemma 1. Let 0(n) denote the orthogonal group and let y, r)EO(n).

Then there exists a neighborhood of the identity U(e) such that if

y,nE U(e) and yn^ny, then y will not commute with yny~hf1 — (y,n).

Proof. Let us assume that y and (7, w) commute. Then 7 and

tj7_17)_1 commute. Hence « can be represented as a permutation of

the invariant spaces of 7-1 or 7 amongst themselves followed by a

mapping of these spaces onto themselves. Hence, if r¡ is sufficiently

close to the identity, n can only map these invariant spaces onto them-

selves. Hence r\ and 7 commute. This proves our lemma.

We will now state a general fact giving a general proof. This is the

only fact from Lie-group theory we will use and if the reader is un-

familiar with it he can take it on faith or read it in [4, Chapter 2].

Lemma 2. Let G be a connected Lie group. Then there exists a neigh-

borhood W(S) of the identity in G such that for any g\, g2EW(S),
(gi, gi)EW(S) and the sequence

(gx(gi, gi)), (gi(gi(gi, gi))), • ■ •

converges to the identity.

Proof. Choose a canonical coordinate system about the identity

in G. Then the coordinates of (gu g2) can be expressed as a power

series in the coordinates of gi and g2 with quadratic leading term.

This proves our assertion.

Lemma 3. There exist arbitrarily small neighborhoods Ua of the iden-

tity in 0(n) such that, for all gEO(n), gUag~1= Ua.

Proof. Note merely that the set of elements of 0(n) whose eigen-

values £ satisfy an inequality | £ — 11 < e is a neighborhood of the

identity in 0(n).

Definition. A neighborhood of the identity in 0(n) satisfying the

conclusions of Lemmas 1, 2 and 3 will be called a stable neighborhood

of the identity.
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3. Lemmas on crystallographic groups.

Lemma 4. Let T be a crystallographic group and let xQEn. Then the

set {y(x)} for yQT cannot lie in a linear space of dimension less than n.

Proof. Assume the lemma is false and that x0QEn exists such that

{7(3:0)} lies in W, a proper linear subspace of E". By a new choice of

origin in En we may assume 0(n) leaves x0 fixed and then 7£T,

7 = (g(v), ¿(7)) must have t(y)QW.

Since T is a group, g(W) = W for all g = g(y). Let WL be the orthog-

onal complement of W. Then, clearly, since points in WL at a distance

d from the origin stay at a distance d, T cannot have a compact funda-

mental domain. This proves our assertion.

Lemma 5. Let T be an abelian crystallographic group; then T con-

tains only pure translations.

Proof. Let 7o£T and let 70 = (g(7o), t0), where g(7o) 7^e. Then we

can always choose an origin and a coordinate system in PB such that,

using homogeneous coordinates,

7o

1  0  /„I

0   5   0

0  0   1

where I is the (rXr) identity matrix, (8 — 1) is a nonsingular sXs

matrix, t0 is a (1 Xr) matrix and 1 is a 1X1 matrix with 1 as an entry

and s+r = n. Then, by Lemma 4, there exist 7£T such that

7 =

A 0 h

0 B h

0     0      1

where A is (rXr), B is (sXs), fa is IX?", and fa is a (lXs) nontrivial

matrix. Then, since T is abelian, 7i7o7f1=7o and this implies that

(5—T)fa = 0. Since (8—T) is nonsingular, this is impossible as fa^O.

This proves our assertion.

4. Main theorems.

Proposition 1. Let T be a discrete subgroup of R(n) and let >p denote

the homomorphism of R(n) onto 0(n) with kernel P". Then the identity

component of the closure of ̂ (T) in 0(n) is abelian.
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Proof. Let U be a stable neighborhood of the identity in 0(n) with

the further property that for all gEU all the matrix values of g

satisfy \i-ij—1| < 1/10. In some orthonormal basis choose 71, 72£r

with the property that \¡/(yi)EU, i=i, 2. Then yi=^(yi)t(yt),

which we will abbreviate Xiy,.

Then

(Ti, 72) = («i, £2) ad^f1 xT1)[(ad(x2) - I)yi + (I - ad(*i))y2],

where ad(x) is the automorphism of Rn induced by x~1Rnx. We then

form the sequence yu (yu y2), (yu (7172)), (71. (lx, (lx, 72))), • • • • By

our construction, the coefficients in 0(n) and Rn of this.sequence are

easily seen to be bounded. But by Lemma 1, this series can never be

the identity, and, by Lemma 2, it can never become trivial at any

point not the identity. Hence, since T is discrete, the identity com-

ponent of the closure of ^(r) is abelian.

Bieberbach Theorem 1. Let Y be a crystallographic group; then T

satisfies the following three conditions :

1. Tr\R" is a vector space basis for Rn as a real vector space.

2. T/Vr\Rn = F(T) is a finite group.
3. F(T) has all integer entries with respect to any basis of Rn deter-

mined by the generators of TC\Rn.

Proof. Assume first that TC\Rn is trivial. Then \f/(T) is an iso-

morphism of T into 0(n) and we will let Io(\¡/(T)) denote the identity

component of the closure of ^(r). Since 0(n) is compact, the closure

of \¡t(T) can have only a finite number of components. Hence, since

jfoGKr)) ls abelian, V contains a subgroup Ti of finite index which is

abelian. But then Yi, being of finite index in V, is also a crystallo-

graphic group. Hence, by Lemma 5, Ti consists of pure translations.

Thus we see that TC^R" is nonempty.

Let WERn be the subspace of R" spanned by the pure translations

of r, i.e., by Tr\Rn. Then, clearly, if R(n) = 0(n)-Rn again and

7Gr is given by (g(y), t(y)), g(y)EO(n),t(y)ERn, then g(y) leaves

W invariant since TC\Rn is normal in 7. Note further that {g(y)} \ W

all yET is a finite group, for otherwise it would contain elements

arbitrarily close to the identity which would, under inner automor-

phism with a basis of TC\Rn, force V to be nondiscrete. From this we

see that T induces an action on Rn/W which is that of a crystallo-

graphic group with no pure translations. By the first part, this implies

the dimension of Rn/W is zero.

This discussion verifies part one and part two of the Bieberbach

Theorem, part three follows trivially from parts one and two.
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Jordan Theorem. There exists a positive function of n, n^0,f(n),

such that, for every finite group FQO(n), there exists an abelian normal

subgroup A(F) such that the order of F/A(F) is less thanf(n).

Proof. Let U be a stable neighborhood of the identity as defined

in §2. Let A (F) be the subgroup of F generated by Fí~\ U. The defini-

tion of U insures that A (F) is normal and abelian. Now assume 0(n)

has Haar measure with total measure 1. Let the measure of U> 1/m,

m an integer. Then it is easily seen that the order of F/A (F) must be

less than tn.

Theorem 2. Let Fa, a = l, • • • , k, be the set of subgroups of 0(n)

which can be expressed as integer matrices with determinant ±1 in

GL(w, P). Then k is a finite cardinal.

Proof. A subgroup of a group satisfying our hypothesis again

satisfies our hypothesis. Let Aa be the normal subgroup of Fa de-

scribed in the Jordan Theorem. Since the order of Fa/Aa is bounded,

there exist only a finite number of distinct groups of the form Fa/Aa,

a = 1, • • • , k. If we can show there exist only a finite number of Aa,

we will have proven our assertion as the group extensions must then

also be finite. Now Aa is the abelian semisimple group. We will show

that there are only a finite number of elements of 0(n) which can be

in Aa for all a. Hence Aa must consist of a finite collection of groups.

First note that n times the distinct characteristic polynomials is

greater than the number of distinct elements of 0(n) in Aa. But since

all roots have absolute value one and the coefficients of the char-

acteristic polynomials are the elementary symmetric functions, they

can take on at most a finite number of values. This completes the

proof.

Corollary. Let T be a crystallographic group and Rn the group of

pure translations. Then, for each n, there exist only a finite number of

groups r/rnp».

Bieberbach Theorem 2. For each n, there exist only a finite number

of crystallographic groups.

Proof. We have seen that T satisfies an exact diagram

1 -> Z» -> T -> F -► 1,

where Zn is n copies of the integers and F can range over a finite col-

lection of groups. It is well known that for each finite group F there

are only a finite number of nonisomorphic groups satisfying the

above diagram. This completes our argument.
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EXTENSION OF NORMAL FAMILIES OF
HOLOMORPHIC FUNCTIONS

THEODORE J. BARTH1

Let X be a Stein manifold, and let A be an analytic subset of X

A well-known application of Cartan's Theorem B [2, Théorème 3

p. 52] states that each holomorphic function on A is the restriction

of a holomorphic function on X. This paper presents a generaliza-

tion of this application, namely that each normal family of holo-

morphic functions on A is the restriction of a normal family of holo-

morphic functions on X.

1. Let X be a topological space which is o--compact, i.e., the union

of a countable family of compact sets. Let K(X) denote the set of all

compact subsets of X. For KQK(X) and f:X->C define ||/||K

= sup{|/(x)|  |xQK}. Define

B(X) = {f\f:X-*C, U/H* < « for all K Q K(X)}.

Clearly B(X) is a complex vector space, and {|| ||k\ KQK(X)} is a

family of pseudonorms on B(X) which then becomes a locally convex

vector space. Since X is <r-compact, B(X) is metrizable, and it is

readily checked to be a Fréchet space.

Definition. Let F be a vector subspace of B(X). We say that a

set FC F is normal with respect to V iff every sequence in F has a

subsequence which converges in V.
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