AN L! EXTREMAL PROBLEM FOR POLYNOMIALS
D. J. NEWMAN

There are a large number of polynomial extremal problems all of
which seem to ask the same question. In very crude terms it is the
following one: How closely can we approximate a nontrivial situation
where

| ax| is a constant for k = 0,1,2, - - -, n

and

n
Z a;,z"

k=0

is a constant for | z| = 1?

One such extremal problem which has received considerable atten-
tion is the following one:
To choose a; with |ai] =1 so that M=max|,i=1 | D_p.o as*| is a

minimum.
Since
1 2 n
Mzg—f ldz] =2 |alz=n+1

2 k=0
it follows that M =(n+1)Y/2. However, in order that (n41)!/2 be
(close to) the right answer the inequality M2 (1/2x) | 2 axz*|?| ds|
must be (close to) equality, which is to say, | D_axz*| must be close
to constant.

It was proved by Hardy that this minimum M, M,, satisfies
M, =c(n+1)1/2, ¢ some absolute constant (see Zygmund [4]). Shapiro
has even shown that the a; can be chosen real (i.e., equal to +1)
and the same estimate achieved (see Rudin [3]).

Thus the order of magnitude of M, is determined as 4/n. The
deeper question regarding the limit of M,/+/n remains unsettled.
In terms of our original heuristic formulation it makes a vital differ-
ence whether M, /+/n—1 or not. Some partial results in this direction
have been obtained by Erdés and Littlewood [1].

Another extremal problem in the same spirit is the following:

Among all polynomials for which

Z akz*
k=0

To find max,; Y g0 || =M.
Here the Schwarz inequality gives
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so that 9, < (n+1)1/2. Again for this estimate to be accurate we must
have near equality in all the above estimates. Thus |a;,| should be
nearly constant, as should | > aiz*|.

It was shown by Newman that, for >0, 9, < v/%, equality hold-
ing for n=1, 2, and 4. Shapiro, however, showed that n=1, 2, 4 are
the only cases of equality. Hardy’s example shows that 9, =c+v/n,
¢>0, and so settles the order of magnitude of 9M,. Again the deeper
problem of whether 91,,/+/n—1 remains unsettled.

As our third example we consider the problem of maximizing

E akz"

k=0

PR

1
Zlals@+nX|alyr= (”+ fll 1

2r
< (n+ 112

1

2x

Idz| subject to |a;,| =1 fork=0,1,-::,n.

If this maximum is called I,, we obtain I,<(n+1)!/? by the
Schwarz inequality. In the case of real a; this has been improved to
I,<(n+.97)12 (for n>0) (see Newman [2]). Once more, by the
previously cited examples, it follows that I,>c+/#n, ¢>0, and so the
order of magnitude of I, is again /.

The purpose of the present paper is to prove that I,/v/n—1, so
that, at least in this sense, the meta-problem posed in our introduc-
tion s solved. We actually prove somewhat more, namely

THEOREM 1. I,=+/n—c, ¢ an absolute constant.

The example we have constructed is related to the Gaussian sums
and is motivated by the fact that these sums have size v/n# while
consisting of # terms of modulus 1. We set w= exp (wi/(n+1)), a;
=w, k=0,1, - - -, m, P(s)= D 1oaiz*, and we prove

LeEMMA. (1/27) [1s1m1 |P(z)|‘ [dzl =n2+0(nd?).

Proor. Writing | > o ake"“’l 2= 3" ce', we note that
(1/27) [1=1| P(2)| 4| dz| = D2, | ;| 2. We also see that co=n+1. Next
we examine ¢; for j>0. We have

n—j n—j 1 — @2nt1—i o — ot
ci= D W = S i = = i
k=0 k=0 1 — ¥ w — i

and we obtain the formula
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sin? j2 )
n
1) |c;|’=——————-—-—— forj=1,2,--.,n
x

sin? j

n+1

We proceed to estimate »_n., |c,~| 2 by splitting this sum into four
parts

Sy = E Icilz, Sy = E chlz,

jsvVn Vn<js (n4+1)/2
S3 = Z | c’.lz’ Sa= E I ‘i|2°
(n+1) /2<j<n+1—-Vn ntl-Vngjisn

First of all we note that, for j>0 by (1)
|‘3»+1—:'|2 = |Cz‘|2
so that
@) |S:| < |S:] and |Si] = [8:].
Next, from the inequality |sin j8/sin 0| =<j, we conclude that
3) |si] s X jtsn X 15w
isVn isVn

Furthermore, from the inequality | 1/sin 0| <7/20 (valid in
0=6=m/2) we conclude that

> (n4 1)2 < (n+ 1)2 1 n?

< — =y,

@ |8 =

Vn<isminz 452 4 a<i<e J2

If we observe that ¢_j=¢;, and combine (2), (3), and (4), we
finally obtain

) > I c,-l’ < 8n¥?
0
and the lemma is proved.
ProoF oF THEOREM 1. We use the Hélder inequality to conclude

a [ioes (L) (f1n1)”

which, applied to our present case, gives
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1 Pl > (%f'PP)m (n + 1)%2

~| ||
2x J |g)=1 (if | PI‘)M (if | Pll)m
27 2r

so that, applying our lemma, we obtain

1 (n + 1)32 nli2
;f I Zakz"l = (n?2 + Andi2)12 > (1 + An—rz)2

> w121 — en~V2) = y/n —c. Q.E.D.
Theorem 1 is a statement regarding L! norms. By applying the
principle of duality we can obtain from it a theorem on L* functions.

Because of its independent interest we record the statement of this
theorem.

THEOREM 2. Given n=0, there exists a measurable function, f(6),
with period 2w and satisfying |f0)| <1 for all 0, such that, with {b}
the Fourier coefficients of f(0), we have Y u_o |bk| =+vn—c, c an ab-
solute constant.

One further remark is perhaps pertinent. We point out, namely,
that the behavior exhibited by our polynomial, P(2), is quite excep-
tional. Indeed, the crucial fact about P(z) is that its L* norm is close
to /7, and it follows from the work of Paley (see Zygmund [4])
that, in a certain sense, most nth degree polynomials with coefficients
of modulus 1 have L4 norms which, instead, are close to 21/44/n.
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