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A REMARK ON WIENER’S TAUBERIAN THEOREM
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A recent note by Levinson [1] made it seem worthwhile to point
out that a weaker version of the Tauberian theorem can be proved
in a few lines which is, however, strong enough to provide a proof of
the prime number theorem.

Let K(x)EL(— =, «) and assume that its Fourier transform obeys
the standard condition

k() = f ”K(x)e“’ dx

#0 forall —wo <§< w,

M

One version of Wiener’s Tauberian theorem is the assertion that if
m(y) is a bounded measurable function such that for almost all x,

@) [ K- pmeray =0

then m(y) =0 almost everywhere.
The weaker version of the Tauberian theorem is obtained by add-
ing an extra requirement on the function K(x), namely that

©) 2’K(x) € L(—, =).
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To use this to prove the prime number theorem, we can follow the
proof given by Levinson, since here one had

0 forx 20
K@ = {
R(e*)e* forx >0

where R is a bounded function; condition (3) is thus satisfied with
“plenty to spare.”
To prove the weaker version, consider the class ® of functions ¢

which have a continuous second derivative and which vanish outside
a bounded interval. Let ¢(£)E®, and set

@ F@) = [ o@estaz
Clearly, F(x)EL(— », ), and | F(x)| | K(x—y)| |m(y)| is integra-

ble as a function of (x, y), where K and m obey the hypotheses above.
Hence, using (2) and Fubini’s theorem, we have

0= f_:F(x)(f_:K(x — ym(y) dy) dx

) - -

= [ “no) ([ kG- 9P dx) 0y
and clearly
©) [ :K<x — )F(x) dx = f:x(e)«e)effv d.

Thus, for each function ¢ in ®, we will have
0 0= [ [ non@swew das.

The stronger requirement (3) on K(x) implies that its transform
x(£) has a continuous second derivative; since, by assumption (1),
x(£) is never zero, we see that multiplication by « carries the class ®
into itself exactly: x®=®. We can rewrite (7) as

® 0= [ mon ([ o ae) 2

for every function ¢ in the class ®. Since ® is closed under transla-

tion, we can replace ¢(£) by ¢(§—a) and apply the usual change of
variable to arrive at
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© 0= [ ([ “otwenat) sy

holding now for all real & Using (4), this may be written as
(10) 0= f m(y)F(y)etv dy

for all real . By the uniqueness of Fourier transforms, we may con-
clude that

(1) m®)F() =0

for almost all y.

Since ¢ has compact support, F(y) is an entire function, and can
be chosen not to be identically zero. Since it can then have at most a
denumerable number of zeros, m(y) =0 for almost all y, and the proof
is complete.

It should perhaps be pointed out that the proof above uses im-
plicitly the concept of a generalized Fourier integral (forced upon us
by the fact that m(y) is merely bounded). Also, the relation kb =% is
somewhat reminiscent of the algebraic nature of the Tauberian theo-
rem.
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