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A REMARK ON WIENER'S TAUBERIAN THEOREM

M. KAC

A recent note by Levinson [l ] made it seem worthwhile to point

out that a weaker version of the Tauberian theorem can be proved

in a few lines which is, however, strong enough to provide a proof of

the prime number theorem.

Let K(x)EL( — œ, co ) and assume that its Fourier transform obeys

the standard condition

/OO

K(x)«P> dx
-.o   W

?± 0   f or all - 00 < £ < ».

One version of Wiener's Tauberian theorem is the assertion that if

m(y) is a bounded measurable function such that for almost all x,

(2) I    K(x - y)m(y) dy = 0
•*-00

then m(y) =0 almost everywhere.

The weaker version of the Tauberian theorem is obtained by add-

ing an extra requirement on the function K(x), namely that

(3) x2K(x) E L(-00, oo).
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To use this to prove the prime number theorem, we can follow the

proof given by Levinson, since here one had

K(x) =»  \
for x g 0

R(ex)e~x   for s > 0

where R is a bounded function; condition (3) is thus satisfied with

"plenty to spare."

To prove the weaker version, consider the class i> of functions <j>

which have a continuous second derivative and which vanish outside

a bounded interval. Let $(£)£<£, and set

(4) F(*)=J%(0««*£di.

Clearly, F(x)EL(— », oo),and |P(:c)| |-K(#—y)\ \m(y)\ is integra-

ble as a function of (x, y), where K and m obey the hypotheses above.

Hence, using (2) and Fubini's theorem, we have

(5)

0 =  f   F(x) ( j    K(x- y)m(y) dyj dx

=   f  m(y) ( )    K(x - y)F(x) dxj dy

and clearly

(6) CK(x - y)F(x) dx =  f "«(éMé)«'* #.
J -00 •'  -00

Thus, for each function <p in <I>, we will have

/CO /»COI    *&)*(&+(&**> dtdy.
-OO J —M

The stronger requirement (3) on K(x) implies that its transform

k(£) has a continuous second derivative; since, by assumption (1),

k(£) is never zero, we see that multiplication by k carries the class d>

into itself exactly: «d>=d>. We can rewrite (7) as

(8) 0 = J  m(y)(f  *(£)** dtydy

for every function <j> in the class $>. Since $ is closed under transla-

tion, we can replace <£(£) by <f>(£— a) and apply the usual change of

variable to arrive at
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(9) 0 =   f  m(y) ( f   *(£)««» ¿f ) «** dy

holding now for all real a. Using (4), this may be written as

/CO

w(v)F(y)e<a" dy
-00

for all real a. By the uniqueness of Fourier transforms, we may con-

clude that

(11) m(y)F(y) = 0

for almost all y.

Since <p has compact support, F(y) is an entire function, and can

be chosen not to be identically zero. Since it can then have at most a

denumerable number of zeros, m(y) =0 for almost all y, and the proof

is complete.

It should perhaps be pointed out that the proof above uses im-

plicitly the concept of a generalized Fourier integral (forced upon us

by the fact that m(y) is merely bounded). Also, the relation k3>=$ is

somewhat reminiscent of the algebraic nature of the Tauberian theo-

rem.
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