ON THE MEAN MODULUS OF TRIGONOMETRIC
POLYNOMIALS WHOSE COEFFICIENTS
HAVE RANDOM SIGNS

S. UCHIYAMA

1. Introduction. Let (m;) be an infinite sequence of distinct inte-
gers. We denote by sa(¢, x) (0<t<1, 0=x<1) the nth partial sum of
the trigonometric series

2 de(Dce(mz),
k=1
where (¢:(f)) is the system of Rademacher’s functions, i.e.
&i(t) = sign sin 2%zt *k=12-.-.),
and e(x) =e?**. The coefficients ¢, may be complex numbers.

R. Salem and A. Zygmund [2] have investigated in detail the order
of magnitude of the maximum modulus of s,(¢, x),

max | s.(¢, x) I ,
0sz<1

for the special case of (m:)=(k), the sequence of positive integers.
The purpose of this note is to present some results concerning the
order of magnitude of the mean modulus

fl | sat, x) I dx,

where the sequence (m;) may be arbitrary.
It is clear that for every ¢ and every n

1/2

1
f ]s,,(t,x)|dx§_R,. R
[}

where R,= Z’,’_llcklﬁ, whatever the sequence (m;) may be. As to
the lower bound for [}|s.(t, x)|dx we shall prove the following
theorems:

THEOREM 1. Let (my) be an arbitrary sequemce of distinct integers.
Then, given any €>0, there exists a positive constant B, depending only
on €, such that except for a set of t's of measure less than e we have
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1/2

) fo ll sat, )| dx = B.Rx

for all n21.
We write for the sake of brevity

Sa =2 | al?] ]| e ?] i,

the summation being extended over all indices 1, j, k, I with 11, j,
k, 1=<n such that m;+m;=m;+m; (order is relevant).

THEOREM 2. Let (m:) be an arbitrary sequence of distinct integers.
If S./Rt=0(n"%) for some a>1, then we have

1

2 liminf Ry f | 5at, %) | dz = 27
B—>® 0

almost everywhere in t.

The condition imposed on S,/Rj; in Theorem 2 obviously implies
that R, tends to infinity with #. Note that for any sequence (m;) of
distinct integers we have always 1<a <2, jf S,/Rt=0(n"%); in the
case of =1, which is excluded from Theorem 2, one may also prove
the validity of (2), assuming that the growth of R, as n— is suffi-
ciently regular (see §3 below).

2. Proof of the theorems. We have

! 2 LI 2
I sa(2, x)I dx = > ¢u(t) | c,,| =R,
0 k=1
almost everywhere in . Hence we obtain by Hélder’s inequality

1
R,.=f | sa(t, %) |2 dx
0

s (j;ll sa(t, %) | dx)m(j;l | sa(t, ) I‘dx)m

for almost all ¢, where, as is readily seen,

©)

1 1 ‘ 2 n ‘
0)) fdzf | salty %) | dx = 2R, = T0y, Tu=32 |al-
0 0

k=1

Let E denote the set of £, 0 <t <1, for which the integral
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1
f | sat, %) |'dz = 2R: — T + A.
[]
Then it follows from (4) that the measure m(E) of E satisfies

2
2 _Tn 2
R s

m(E) S < <
2R®—T.+ A4~ 2+a

€

if we put 4 =aR? and take a>0 sufficiently large. Thus, for any
téEE we have

1 4 2
f | sa(t, x)| dx < (2 + a)R,,

and we obtain, via (3),

3/2

! R,
j; Is.(t,x)ldx_?,m—B.R..

with B,=(2+a)~12. This is (1).
Now, let us consider the integral

1, 1 ' . )
I, = f R, (f | sa(t, ) |4dx — 2R, + T,.) dt.
[} 0
It is not difficult to verify that

j;l(f:' snlt, %) l‘dx)zdt = (2R. — T.)' + 0(S.).

By the assumption S,/R;=0(n"%) (a>1) and the relation (4) we
thus have I,=0(n%) and therefore » ;°I, <. Hence

o~ ,—4 t 4 2 2
>R, fls,.(t,x)ldx—ZR..+T,. <w
0

n=1

for almost all ¢. It follows in particular that for almost all £ and any
€>0 we have for all n=n,(¢, €)

f l| salt, 0) |'dz < 2 + R,

so that
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1
R . | sa(t, ) | d2 > (2 + e)‘m

by (3) again. Since >0 is arbitrary, this proves (2).

3. Remarks. (1) Let us consider the case of S.,/Ri=0(1/n). It
will be immediately clear from the argument of §2 that we have

L]
2 Ip < o,
Ma=]

so that

1
lim inf R;}nf I sm3(t, %) | dx = 2
0

n—ro

for almost all ¢.
Suppose now that

Rminr/R—1 as m— oo,

Let n be any integer between m? and (m+1)2. Then from the in-
equality

fll sa(t, x)l dx —fllsn’(t,x)ldx

1
= j; | sa(t, ) — sm2(t, %) | dx
< (R, — Ru)'?

it follows that

— 1 R g\ —1/2 _ 1
R f | sact, x)Idxg( Z‘“’) R" f | saa(t, %) | dz
[} 2 0

Rms1yt ‘ 172
- - .

liminf R,

n—> 0

Hence

1
f | sat, %) | d2 = 27
0

for almost all ¢.

As an example we take ¢;=1 (=1, 2,--:-.). We have then
R,=T,=n, and S,=0(n?) for any sequence (m;) of distinct integers.
Therefore
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i oi(t)e(mx) | dx = 27113

k=1

1
lim inf n—1/2 f
0

f3—> o

almost everywhere in £.
(2) It is obvious that our Theorems 1 and 2 have analogues for
partial sums #,(¢, x) of real trigonometric series

> du(t)as cos 2x(mux — o)
k==l
with real coefficients a; and phases ax. Put
1 n
P, =— Z a:
2 a1

and

22122
Qn = E a;@iaxay,
where the summation is taken over 1 =1, j, k, I <# such that
tmit m;+tm £ m=0.

Then, given any ¢>0, we have for all £ but a set of measure less than
eand all =1

1
f I ta(t, %) [ dx = C.P,l./z
0

with some constant C.>0, and, if 8>1 or B=1 and P41}/ Pmt—1
as m— o, where Q,/Pi=0(n"*), we have for almost all ¢
lim inf P,

t Sl

1
f | tat, %) | dw = 371,
[}

The proof of these results is quite similar to that of the results for
complex polynomials s,(¢, x).

(3) Let my, - - -, m, be any set of n distinct integers., S. Chowla
has conjectured that

n
min Y, cos 2xmx < — Cnll?
032<1 kel

for some absolute constant C>0 (cf. [1]). If this conjecture is true,
it is essentially the best possible.
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We can show that, given n distinct integers my, « « -, m,, there
exists always a subset m,,, - - -, m; of m,, - - -, m, for which

r 1 n 1/2
min ) cos 2zmx < — —(—) .
0352<1 jml 4 \6

This is an easy consequence of the fact that

1 n n 1/2
f > & cos 2xmx | dx > (?)
[]

k=1
for some sequence (ex) of +1, which is a particular case of the results
mentioned in (2).
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