
ECHELON SPACES OF ORDER »

E. DUBINSKY1

The notion of Echelon spaces was introduced by Köthe [2] as a

means of constructing sequence spaces by taking the intersection of

multiples of I1 (see below for definitions). The definition was extended

by Dieudonné and Gomes [l] to include lp for \^p< °o. It is the

purpose of this note to consider the case, p = co. AH of the terminol-

ogy defined below is due to Köthe.

A sequence of complex numbers whose tth coordinate is Xi will be

denoted by x or (xi). A sequence of sequences such that the ¿th co-

ordinate of the &th sequence is xf will be denoted by (xw). If x, y are

sequences and a is a complex number, we denote the pointwise sum,

pointwise product and pointwise scalar product by x+y, xy, ax re-

spectively. If each yi is different from zero, we define the pointwise

quotient, x/y. If A is a set of sequences, then xA = {xy \ y EA }. We

define an ordering which is compatible with these arithmetic opera-

tions by taking as positive cone, P = {x\ x.-^O for all i and x<^0 for

at least one i}.

The symbol, X, will denote a set of sequences which is a vector

space under the above operations. Given X, we define its a-dual,

Xx= {u |xGX=>£<11 \xiUi\ < «J}. The relation, (x, u) — £41i xíUí

places X, Xx in duality. For example, if lúpú™ and we let l"

= {x I £<-i I *»'| "< °° } Of P = °° i the sum is replaced by the sup),
then if \ = lp, \x = l" where l/p+l/q = l.

The vector space, X, is said to be perfect if X =XXX. It is easy to see

that Xx is always perfect. If A is a set of sequences, we define the nor-

mal hull An={x\ ByEA3\xi\ á|y<| for alii}. If A=An, then A is

said to be normal. Since X, Xx are in duality, we may speak of simply

bounded subsets of X. Now Xx is clearly normal and from this it fol-

lows that the normal hull of a simply bounded set is simply bounded

(as a subset of Xxx perhaps, if X is not normal).

Let (aw) be a sequence of sequences such that af>0 for all i, k

and a(i) ^a(*+1). If 1 ̂ p^ », we define the Echelon space of order p

corresponding to (ak) to be,

m     i

x = n — p.
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Köthe [3, §30, 8 and 9] presents a complete discussion (due to

himself and Dieudonné and Gomes) of Echelon spaces of order p < =0.

The main results are: X is perfect; Xx = Ua(i)Zï; a characterization of

bounded sets in X, Xx; a necessary and sufficient condition that X is a

Mon tel space ; and X is always reflexive if p > 1, but reflexive if and

only if X is a Montel space, when p = i. In the sequel, we consider

these results for the case, p = 00. The proofs of Propositions 1, 2 are

direct computations with sequences and are different from those

given by Köthe. The proof of Theorem 1 is only a slight variation of

Köthe's proof but is presented here because of its delicacy.

We shall say that (ak) is strongly increasing if there is no triple

{(jy), ko, (Mk)} where (j,) is a monotone increasing sequence of posi-

tive integers, k0 is an integer and (Mk) is a sequence of positive num-

bers such that

for all k^ko. In short, we require that there is no subsequence of

indices on which all of the aik) are "dominated" by one of them.

In all that follows, (a(A:)) is a sequence of coordinate-wise mono-

tone increasing sequences of positive numbers and X is the Echelon

space of order 00 corresponding to a(i).

Proposition 1. The a-dual, Xx, of X is given by Xx = U"_I a^H1. X is

perfect.

Proof. It is easy to see that the union is contained in Xx, since I1

is the a-dual of lM. Suppose uQ\x. We may assume that u>0. Let

&<*>=tt/o(t). If u ¡g not in any o1"!1, then for each k we have, blk)>0,

22<-i &*= °°> and fc(*+1) ¿b{k). Hence we can find a sequence v=(vi)

and a strictly increasing sequence of positive integers, (4) such that

Vi = b* for ik¿i<ik+i and 22í*-fir1 V<>1- Since (&(*>) is decreasing,

Vi¿b% for i<zik. Further, Vi = 0 if w¿ = 0. Hence there exist positive

numbers Mi, Mi, ■ • • such that Vi¿Mkb* for all i. Let x, be 0 if

w, = 0 and let *<««»</«< otherwise. The sequence ¡c = (*<)£X but

22*¿M» diverges which is a contradiction. Hence m is in the union.

Finally it follows from [3, §30, 4, (1), b)] and the fact that Ia is

perfect, that X is perfect.

It is shown by Köthe [3, §30, 5, (5)] that in a perfect space, weak

and strong bounded sets are the same, so we shall use the term,

bounded.

Proposition 2. A subset, B, of\is bounded if and only if, for each k,

the set, a(k)B is a norm bounded subset of l".
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A subset, B, 0/ Xx is bounded if and only if there exists k0 such that

BEa^H1 and (l/aikl>))B is a norm bounded subset of I1.

Proof. Everything is straightforward except the necessity of the

condition in the second statement.

We shall first show that if (w(4)) is a sequence of elements of Xx such

that u{k) E.aik)ll then (uik)) is not bounded. If this hypothesis holds,

we can find a strictly increasing sequence of integers, (ik) such that

u+i-l      u.\

£ ^->k.

Let xik) he a sequence defined by

farg (uí)
k

Xi  =  i a.
for it té i < ik+i,

otherwise.

Since (aik)) is increasing, \xf\ âl/af for i^ik>, k^k'. Hence (x(i))

is a bounded subset of X. But | (x{k), u^)] >k, so (w(4)) is not bounded.

Thus we have shown that if B is a bounded subset of Xx, there exists

ko such that B Eah"ll.

Finally, suppose (w(t)) is a sequence in the bounded set B, but

r     fi"*'hm 2-, —¡r = °°-
t->«   i_i    a(

We shall choose subsequences (iy), (k,) inductively according to con-

ditions which will be stated inductively. Let ii = ki = l, and suppose

the choice has been made up to v. Since (u{k)) is a bounded subset of

Xx, it is coordinatewise bounded, so with the fact that (a(i)) is increas-

ing, we may define

( | Ui\ I )
M, = sup<—— 1 ^ i < i„ k = 1, 2, • • •> .

I a* I ;

Then we choose kw+i, t,+i to be greater than k„ i, and such that

£   ]—¿- > v + (i, - l)M,.
,=i      a*'

Hence,
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w I «M ̂
\-%,   <*i

Having chosen these sequences, we define, for each v, the sequence

xM by

arg(0 .      .
—£-   for i,^»< í,+i,

*, =

0 otherwise.

As before, (x(,,)) is a bounded subset of X, but | (xM, tt(t,,))| >p which

is a contradiction.

Theorem 1. The spaces X, X* are Montel spaces in their Mackey

topologies if and only if (a(*>) is strongly increasing.

Proof. If X, X1 are Montel spaces, the proof that (a(t)) is strongly

increasing is exactly the same as that given by Köthe [3, §30, 9, (1) ].

Suppose (ak) is strongly increasing. To show that X (and hence Xx)

is a Montel space, we must according to Köthe [3, §30, 7, 8] show

that in X, weak convergence implies strong convergence and in Xx,

sections are strongly convergent.

The latter actually does not require the assumption that (a(i)) is

strongly increasing. In fact, if w£Xx, then there exists fe0 such that

v = u/a(-k')Ql1. If B is a bounded subset of X, then by Proposition 2,

aika)B is a bounded subset of Ia. Let M he its bound. Let uN, vN be the

iVth sections of u, v. Then for all xQB,

00

| (*, w* - u) I  =  I (a*x, v» -v)\  ¿ Mj2\*i\  -» 0 as TV -* «.
t-AT

Now we suppose that in X, weak convergence does not imply strong

convergence and we shall show that (a(k)) is not strongly increasing.

Let (xw) be a sequence in X which converges weakly but not

strongly to 0. Hence there is a bounded sequence (uin)) in Xx such that

| (xM, M<n))| ̂ 1 for all m. Let B, Bx be the normal hull of the sets

{x(B)}, {w(n)} respectively. They are again bounded. By Proposition

2 there exists a sequence (mk) of positive numbers, a positive number,

A, and an integer, fe0, such that of

i = l, 2, • • • ; and 22T-i U/afOl««
such that

Xi\ ¿mk for all xQB and for all

¿A for all uQBx. Choose Mk

ti Mk      24
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We shall choose sequences (»„), (r„), (s„) of integers such that

fi=l, s,_i<r,<5, for v>l and £jir |x"'wj'| ^1/2. Clearly this can

be done for v = l. Suppose it has been done for v. Choose «,+i large

enough so that |x^+1| <l/3Aaf' for t = l, • • • , s,. This can be done

since (xM) is weakly convergent and hence coordinatewise con-

vergent to 0. Hence,

*» 1     •»     1 1
Z|      "»+1    "»+1 | -        x       T^v x I       »»+1 1 -     x

<-i 3.4 «  a*0 3

so

°° 0        1
El     "»+1   »»+i I              * *

| Xi      Ui       I    £ - > — •
•=íf+i 3        2

Hence we may choose r,+i = J»+l and sr+\ large enough to satisfy

the stated inequality.

Now, let J,,ib= {j\rr^j^s, and o*>aJ"Af*}. Suppose, for a given

y, U* /,,» is the set of all integers from r, to s,. Then,

1        *' " °°    1 a-
— sî £ I *"VI ̂  £ £ I *"VI < £—- £ -ir
¿ j-r, t-1 jtJ„k i-l -Mi je/„i 1/

»»*    "        1      .     »,. ,    "      Wi 1
á£^£-^l%l =^Z^

t_i Af* ,=!   a,-0 i_i ifcf,

and this is a contradiction. Hence, for all v, there exists j„ such that

r,^j,^s„ but a^ga^ifi and this contradicts the fact that (aik)) is

strongly increasing.

Corollary 1. The spaces X, Xx are Montel spaces in their Mackey

topologies if and only if\ (resp. Xx) has no stepspace which is a diagonal

transform of Ia (resp. I1) (see [2, p. 411 and p. 413] for definitions).

Proof. This follows immediately from the theorem.

Corollary 2. The spaces X, Xx are reflexive in their Mackey topol-

ogies if and only if they are Montel spaces.

Proof. This follows immediately from Corollary 1 and the condi-

tion for reflexivity given by Köthe [3, §30, 7, (5)].

Proposition 3. The space X is an (F)-space in its strong topology.

Proof. It follows from Proposition 2 that X is metrisable. Since X

is perfect, it is complete in the normal topology [3, §30, 5, (7)].

Therefore X is complete in its strong topology.
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ON EXTREME POINTS OF THE NUMERICAL
RANGE OF NORMAL OPERATORS1

C. R. MACCLUER

Suppose A is a bounded normal operator on the Hubert space H.

Then the extreme points of the closure of the numerical range are in

the spectrum of A. This follows because the convex hull of the spec-

trum is the closure of the numerical range and because the extreme

points of the convex hull of a compact set are in the compact set. The

object of this note is to point out that more can be said about the ex-

treme points of the numerical range itself. Namely

Theorem. For normal operators the extreme points of the numerical

range are in the point spectrum.

Proof. Let A be a normal operator on the Hubert space H. Let

A(^4), W(A), n0(.4) denote the spectrum, numerical range, point

spectrum of A respectively. Suppose that X is an extreme point of

W(A). Then 0 is an extreme point of W(A -X) = W(A) -X. Also

n0(.4 —X) =n0(.4) —X. Thus for our purposes it is sufficient to show

that if 0 is an extreme point of W(A), then 0 is an eigenvalue.

Because W(eaA) =eaW(A) and Ilo(ei$A)=euTIo(A), and since 0 is

an extreme point of the convex set W(A), we may assume that W(A)

lies entirely within the closed right-hand half plane Re z^O.

By the spectral theorem for normal operators, A is unitarily equiv-

alent to a multiplication on L2(X, p) by a function a(x) in LX(X, p)

where (X, p) is some finite measure space. That is, after a change of

notation, H=L2(X, p) and (Af)(x) =a(x)f(x) for all / in H.
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