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F. A. VALENTINE

We will prove that a closed connected set S in ET whose points of

local nonconvexity can be decomposed into a finite number of convex

parts also possesses a simple type of polygonal connectedness. Fur-

thermore, if S has a finite number of points of local nonconvexity, we

obtain another result. In order to describe this situation easily we

use the notation of Ln set used by Horn and Valentine [l ] in 1949.

For other results related to Ln sets, see A. Bruckner and J. Bruckner

[l] and Valentine [l]. The following notations and definitions will

enable us to express the results more readily.

Notations. The interior, boundary and closure of a set S in Eu-

clidean r-space Er are denoted by int S, bd 5 and cl 5 respectively.

If xES, yES, then xy denotes the closed line segment joining x and

y. The symbols U, C\ and ~ denote set union, set intersection and

set difference respectively. The symbol 0 is used to denote the empty

set. The convex hull of a set SEE, is indicated by conv S.

Definition 1. A set 5 is called an Ln set if each pair of points in S

can be joined by a polygonal arc of S containing at most n segments.

Definition 2. A point x E S is a point of local convexity of 5 if

there exists a neighborhood N of x such that Nf~\S is convex; other-

wise, x is called a point of local nonconvexity of S.

Definition 3. A set S is starshaped relative to a point p if for

every x E S it is true that pxES.

The following two theorems together with Theorem 3 stated later

contain the main results of this paper. The symbols n and r always

denote non-negative integers.

Theorem 1. Suppose S is a closed connected set in ET which has at

most n points of local nonconvexity.

Then S is an L„+i set.

Theorem 2. Suppose S is a closed connected set in Et. Furthermore,

suppose that the set Q of all points of local nonconvexity of S can be de-

composed into n convex subsets.

Then S is an L2n+i set.

It should be observed that if w = 0 in Theorems 1 and 2, then each
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reduces to the important theorem of Tietze [l] which we state as

follows, since it will be used.

Theorem (Tietze [l]). If S is a closed connected set in Er all of

whose points are points of local convexity, then S is convex.

Corollary 1 (to Tietze's Theorem). Let S be a closed set in Er.

Suppose xQS, yQS, zQS with xyQS, yzQS. If the triangular set

A = conv(xUyUz) determined by x, y, z contains no points of local

nonconvexity of S, then AQS.

Proof. Corollary 1 follows from Tietze's Theorem since that com-

ponent of Sr\A which contains xy and yz is a closed connected set

having no points of local nonconvexity.

Corollary 2 (to Corollary 1). Let S be a closed set in ET. Sup-

pose xQS, yQS with xyQS, yzQS. If the only possible points of local
nonconvexity of S in A = conv(xWyWz) are x and z, then AQS.

Proof. Choose points XiQxy, ZiQyz so that conv(xAJy\Jzi) con-

tains no points of local nonconvexity of 5. Corollary 1 implies

conv(xAJy\Jzi)QS. Since S is closed, an obvious limit procedure

implies AQS.
The following lemma will shorten the proofs of Theorems 1 and 2.

Lemma 1. Suppose S is a closed connected set which has at least one

point of local nonconvexity. If x is a point of S, then there exists at least

one point p of local nonconvexity of S such that xpQS.

Proof. Let Q denote the collection of all points of local noncon-

vexity of 5. Since S is closed, Definition 2 implies that Q is closed.

Firstly, if xQQ, Lemma 1 follows by choosing p = x, since xpQS.

Secondly, if x QQ, let S(x) denote the set of all points of 5 which can

see x via S, so that

(1) S(x)={y:xyQS}.

We wish to prove that QC\S(x) ¿¿0. To do this, suppose Qi~\S(x) =0.

We will prove that this implies S(x) is both open and closed in S, so

that S(x) =S, S being connected. To prove S(x) is open relative to S,

choose yQS(x). Since Q is closed, condition (1) and Qr\S(x)=0

imply there exists a neighborhood N(y) of y (with Si\N(y) convex)

such that if zQSr\N(y), then Qr\conv(xVJyVJz) = 0. Corollary 1
then implies that xzQS. Hence, S/^\N(y) QS(x) so that S(x) is open

relative to S. To prove that 5 is also closed relative to 5 let yj—>y

(/ = 1, 2, • • • ) where y,QS(x). Then, since xyjQS(x), and since S

is closed, we have xyQS so that yQS(x). Hence S(x) = S, since 5 is
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connected. This and the assumption Qf~\S(x)=Q imply SC\Q = 0.

Since 5^0, we have (? = 0, a contradiction, because the cardinality of

Q is greater than zero, by assumption. Thus, Qf~\S(x) $¿0, and Lemma

1 has been proved.

Finally, before proving Theorems 1 and 2, we state the following

useful concept.

Definition 4. Let Q be a subset of a set S in Er. An s-fold con-

nected convex covering (P for Q is a collection of s or fewer closed

convex sets whose union is a connected subset of 5 which contains Q.

Proof of Theorem 2. First, observe that if n = 0, then Tietze's

Theorem [l] implies Theorem 2. Hence, suppose n2:l. Our hypoth-

eses imply that the collection Q of all points of local nonconvexity

can be decomposed into n closed convex subsets which we designate

by Qi, • • • , Qn, so that

Q = Û Qi-

The sets Q,(i = i, • • • , n) may be taken to be closed and convex

since 5 is closed. They may or may not be disjoint. We will prove

that there exists a (2n — l)-fold connected convex covering <? for Q

as described in Definition 4. If «= 1, let (P= {Q}, since Q is a 1-fold

connected convex covering of itself. Hence, suppose n>l. Since each

set Qi is its own 1-fold connected convex covering, the collection

{Qx, Qi, " • " . Qn} has a maximal subcollection of 5 members, which,

relative to S, has a (2s —l)-fold connected convex covering. Without

loss of generality we will rearrange subscripts so that this maximal

subcollection is

<Pi={QuQt,-'-,Q.},     «S*

Remember that Uj_i Qi has a (2s — l)-fold connected convex covering

in 5. We will prove that s = n. To do this suppose s<n, and let

<P2=- {Q,+i,Q.+i, ■ ■ ■,(?„}.

Also let

(2) Ö1 s Û  Qi,        Q2 = Û  Q<-
<-i »-«+i

The maximality of (Pi as described above implies Q1C\Q2 = 0. Lemma 1

implies that for each point xES there exists either a point yiEQ1

or a point yiEQ2 such that at least one of the two segments xyi, xy2

is in S. Since 5 is a closed connected set, the preceding sentence im-
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plies the existence of at least one point yQS and a pair of points

yiQQ1, y2£Q2 such that y< (4 = 1, 2) is a nearest point of Q* which

satisfies the condition

(3) yy< QS      (i = 1, 2).

Hence, \yy,\ =the distance between y and S(y)r\Qi. Let Q¡ and Q*

denote elements of (Pi and <P2 respectively such that

(4) yi £ Qi,      yi Q Qk-

First, if yQQ1 then Q1]UQk would have a [2(s+l)-l]-fold con-

nected convex covering consisting of the (2s — 1) -fold connected con-

vex covering for Q1 together with yiy2 and Qk. Hence (Pi would not be

maximal, so that yQQ1. In exactly the same way we have yQQ2.

Hence, yQQ. Now, since y¿ is a nearest point of Q* to y which satisfies

(3), the maximality of <9i implies

(5) Qr\yyi = yi       (¿ = 1,2).

Without loss of generality we may assume that

(6) \yy\\ 1 |yy»|.

Since Q2nyyi = 0, let zQyy2 be that point such that yizC\Q2^0, and

such that conv(y WyiWz) contains no points of Q2 in its interior. Since

yQQ, no points of Q1~yi are in the conv(yWyiUz), otherwise there

will exist a point y*QS(y)C\Q1 with |yy*| <|yyi|, thus violating

(3). Let y i be the point of Q2r\yiz nearest to y\. Corollary 2 applied

to yi, yi and y implies yiy3QS. Let Qm be a member of 6*2 containing

y3. Since yiytQS, the collection Q1 together with Qm would have a

(2s+1)-fold connected convex covering which violates the maximal-

ity of (Pi. Hence, we have a contradiction, and hence Q has a (2m — 1)-

fold connected convex covering.

To complete the proof, choose any pair of points x and y in S.

By Lemma 1 there exists two points xi and x2 of Q such that xxiQS,

yXiQS. Since Q has a (2« —l)-fold connected convex covering xi and

Xi can be joined by a polygonal path in 5 containing at most 2» —1

segments. Therefore, x and y can be joined by a polygonal path in 5

containing at most 2« +1 segments, so that 5 is an P2n+i set.

Proof of Theorem 1. The proof of Theorem 1 has the same form

as that of Theorem 2 with the following difference. The set Q of

points of local nonconvexity of S has an (» — 1) -fold connected convex

covering, and the proof of this fact can be constructed as in the proof

of Theorem 2. It should be observed that in this construction the

convex covering is the union of line segments with endpoints in Q ii
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n> 1 and a single point if n = 1. The fact that 5 is an Ln+i set then

follows immediately from Lemma 1.

Theorem 2 can be generalized as follows. We state this result last

because of its more complicated structure.

Theorem 3. Let S be a closed connected set in Er. Suppose the set Q

of all points of local nonconvexity of S can be decomposed into n con-

nected closed subsets Qi, Q2, ■ ■ • , Qn such that if xEQi, yCQi. Qi
C {Qi, Qi, ■ • • , Qn}, then xyES.

Then S is an L2n+i set.

Proof. Just as in the proof of Theorem 2 it can be proved that the

set Q can be covered by a connected set which is the union of 2» —1

subsets Pi, P2, • • ■ , Pin-i such that if x E Pi, y E Pi, Pi

E {Pi, Pi, • • • 1 P2»-i}, then xyES. Lemma 1 again implies that 5

is an L2b+i set.

Remarks. It is a relatively simple matter to construct examples in

E3 which satisfy the hypotheses of Theorem 2 and which are not L2n

sets, so that the theorem for r>2 in one respect is a best theorem.

One such example consists of the appropriate union of polyhedra in

E3 each of whose points of local nonconvexity consists of a single

segment, together with a suitable additional number of line segments

intersecting each of these polyhedra in a unique point, the latter

being a point of local nonconvexity. Since the converse of Theorem 2

is false, the theorem does not characterize Z<2n+i sets. Corresponding

remarks also apply to Theorem 1. Furthermore, it should be observed

that Theorem 2 is of chief interest in ET with r2:3, because for sets

S in the plane E2 the hypotheses of Theorem 2 imply the hypotheses

of Theorem 1, so that 5 is an Ln+x set, a stronger result. However, for

r>2 this no longer holds, and the conclusion of Theorem 2 cannot be

improved.

Questions. It appears that Theorem 2 can be improved if 5 is a

polyhedron or if S is the closure of an open connected set. In fact the

classification of points of local nonconvexity for polyhedra is itself

of independent interest. In E2, the set Q for a simple closed polygonal

region are the points at which the polygonal boundary has re-entrant

angles, and there are only a finite number of these so that Theorem 1

applies. Also it is a simple matter to construct polygonal regions in

E2 having exactly n points of local nonconvexity which are not Ln

sets, so that Theorem 1 is a best theorem in one sense. The correspond-

ing result for polyhedra in E3 is still unsettled, since the points of local

nonconvexity for a polyhedron may consist of a complicated com-

bination of line segments. Both Theorems 2 and 3 do shed a good deal
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of light on this more complicated situation. However, there is still

more work to be done for polyhedra in E„ r ^ 3. As a final observa-

tion note that if there exists a point pQS such that for each yQQ we

have pyQS, then Lemma 1 implies that 5 is an L4 set. It appears

that this result might have further generalizations.
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