A COUNTEREXAMPLE IN DIFFERENTIAL ALGEBRA!
GEORGE M. BERGMAN

Kolchin [1, p. 791] calls a differential field extension “weakly nor-
mal” if the fixed field of its Galois group is the base field, and “nor-
mal” if it is weakly normal over every subextension. He gives an
example to show that if the extension is allowed to have a larger field
of constants than the base field, these conditions are not equivalent,
but he does not know whether they are equivalent for extensions
preserving constants. The example in §1 of the present paper shows
that they are not. In §2, we describe precisely the Galois group of this
example.

I would like to express my indebtedness to Professor A. Seidenberg,
whose fascinating course in differential algebra here at Harvard has
been my introduction to the field.

1. The example. Let 4 be a nontrivial additive subgroup of the
complexes, C, with a finite additive basis, ¢;, « + +, ¢,; and let G be
the multiplicative group of those complex numbers % such that 4 is
closed under multiplication by both # and %~ Suppose that G does
not consist entirely of roots of unity.?

Let F be the field of meromorphic functions generated over C by
e and e, - - -, ¢, These generators are easily shown to be alge-
braically independent.

The field is closed under differentiation. The differential equations
satisfied by our generators are:

d
(1) SO oo = e
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1 This work was done while the author held a National Science Foundation first
year graduate fellowship.

t For example, let R be any finite integral algebraic extension ring of the integers,
and 4 any finitely generated R-submodule of C (such as R itself). G will contain all
the units of R. From the Dirichlet Unit Theorem, we know of a very large class of
such rings R having units other than roots of unity.

Conversely, given any 4, if we take R to be the ring of all complex numbers %
such that ¥4AC 4, then G will consist exactly of the units of R. This R must be of
finite rank as an additive group (for 4 is, and given any a0 in 4, RC(1/a)4),
hence must be a finite integral extension of the integers.

As a concrete example, G = {+(1 + +/2)*}ae-..r012-+, if A is generated
by 1 and /2.
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Now for any nonzero complex number %, consider the algebraic
isomorphism ¢, of F defined by

e’ — wue’,
€iot — gueie’,

That it is a differential isomorphism can be checked either by veri-
fying that the images of the generators satisfy (1), or by noting that
it is the restriction to F of the “translation”-automorphism f(2)
—f(z+M) of the field of all meromorphic functions, where A is any
logarithm of .

If  is not a root of unity, the only elements of F invariant under
this map are the constants. For suppose f(2) is invariant. By thenature
of the field F, f(2) is a meromorphic function of e*: f(z) =m(e*). Then
we must have the identity m(u{) =m({). Expanding m about zero in
powers of ¢, we find that it must consist of a constant term only.

If u is a member of G, ¢, will be an automorphism of F over C.
Taking u to be a member of G that is not a root of unity, we get an
automorphism of F over C whose fixed field is C. So F is weakly nor-
mal over C.

To show that it is not normal, we shall show that for some prime p,
any automorphism ¢ of F over C leaving e?* fixed leaves e* fixed as
well, whence F is not weakly normal over C(e?*).

Let ¢ be an arbitrary automorphism of F over C. Since g(¢?) must
satisfy the same differential equation as e*, it must be of the form ue*
for some #E C* (the nonzero complexes). From this, we calculate in
turn that for each a€ A4, o(e*”) must be of the form ke (k€ C*,
not necessarily the same for all a). The only elements of such a form
in F are the ke’ for a’ € 4, hence au =a’, hence multiplication by %
sends A into itself. Looking at ¢—!, we similarly conclude that multi-
plication by #~! sends 4 into itself. Hence #&G. (This is not to say
that o need equal o,—cf. §2.)

Now G can contain at most finitely many roots of unity. (For it is
the group of units of a finite algebraic extension of the integers—see
footnote 2.) Hence for some prime p it will not contain the primitive
pth roots of unity. Now suppose the o discussed above leaves e?= fixed.
Then er*=0(e??) =a(ef)? =ure??, hence u =1, hence o leaves ¢* fixed.
Q.E.D.

2. Further observations. From the argument begun above, we can
see that any automorphism of F must be of the form:

eF — uet v EG),
eoiet —> Rugueid keCi=1,---,n).
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We find that for all #E€G and all values of &, - - -, k, this gives an
automorphism of F (for the images of e*, e% are algebraically inde-
pendent and satisfy the differential equations (1)). Let us designate
this automorphism (ky, « - -, ka, %).

Let X be any commutative group. The ring of # X% matrices with
integral coefficients has an obvious action as a ring of endomorphisms
on X*—if X is written multiplicatively, for instance, for any n-tuplet
x=(x, * * *, ) of members of X and any matrix # = (m,;), we can
write x»=(J]i«, - - -, JI/«™). In particular, the group of in-
vertible matrices acts as a group of automorphisms of X».

Given # &G, let % be the matrix showing the action on 4 of multi-
plication by u, in terms of the basis ¢, - - -, ¢,. Then we can check
easily that our automorphisms compose by the rule (%, %)-(%’, »’)
=(k-k'%, uu’). Thus we have a semidirect product of (C*)* and G.
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