ON THE DE LA VALLEE POUSSIN DERIVATIVE ${ }^{1}$

C. KASSIMATIS

Let f be a real valued function over D, a subset of the reals. For any integer $n>0$ and any set $P \subset D$ consisting of $n+1$ distinct points p_{1}, \cdots, p_{n+1}, the nth divided difference of f corresponding to P, $V_{n}[f: P]$, is given by

$$
\begin{aligned}
V_{n}[f: P] & =V_{n}\left[f: p_{1}, \cdots, p_{n+1}\right] \\
& =\sum_{j=1}^{n+1} f\left(p_{j}\right) /\left[\left(u-p_{1}\right) \cdots\left(u-p_{n+1}\right)\right]_{u-p_{j}}^{\prime}
\end{aligned}
$$

the "prime" denoting ordinary differentiation.
Now let D be the interval (a, b) and f continuous over D. Denote by E the set consisting of the $n+1$ points x_{1}, \cdots, x_{n+1}. If

$$
\lim _{n \rightarrow 0} n!V_{n}\left[f: x+x_{1} h, \cdots, x+x_{n+1} h\right]
$$

exists and is finite, it is called, following Denjoy [1, p. 305], the nth E-generalized derivative of f at $x, f_{n, E}(x)$. If $f_{n, E}(x)$ is independent of the choice of $E \subset S$ for a subset S of the reals, we will call it the $n t h$ S-generalized derivative $f_{n, s}(x)$.

Let f and D be as above. If for $x \in(a, b)$ we have

$$
\begin{equation*}
f(x+h)=a_{0}+a_{1} h+\cdots+a_{n} h^{n} / n!+o\left(h^{n}\right) \tag{1}
\end{equation*}
$$

where the numbers $a_{i}=a_{i}(x), i=0, \cdots, n$, are independent of h, then a_{n} will be called, following Marcinkiewicz and Zygmund [2, p.1], the nth de la Vallée Poussin derivative of f at $x, f_{(n)}(x)$.

If $f_{(n)}(x)$ exists so does $f_{(i)}(x)$ for $i=1, \cdots, n-1$. If f is differentiable n times at $x, f_{(i)}(x)$ exists for $i=1, \cdots, n$ and is equal to the ordinary derivative of the corresponding order. The converse is not true for $n \geqq 2$. Let $f(x)=e^{-x^{-2}} \sin e^{x^{-2}}$ for $x \neq 0$, and $f(0)=0$. Then, $f_{(n)}(0)=0$ for $n=1,2,3, \cdots$. However, the ordinary derivative of f of order at least 2 does not exist at $x=0$.

Denjoy shows [1, p. 289] that if $f_{(n)}(x)$ exists then $f_{n, s}(x)$ exists for S arbitrary and $f_{n, s}(x)=f_{(n)}(x)$. Since the existence of $f_{(n)}(x)$ implies that of $f_{(i)}(x), i=1, \cdots, n-1$, it follows that $f_{i, s_{i}}(x)$ exists and $f_{i, s_{i}}(x)=f_{(i)}(x)$ for S_{i} arbitrary. Further, we can deduce easily from relation (1) that

[^0]\[

$$
\begin{array}{r}
\lim _{n \rightarrow 0}\left\{\left(y-x-x_{i} h\right) V_{n+1}\left[f: x+x_{1} h, \cdots, x+x_{n+1} h, y\right]\right\}=\theta(x, y-x) \\
i=1, \cdots, n+1
\end{array}
$$
\]

where $\theta(x, y-x) \rightarrow 0$ as $y \rightarrow x$, and x_{1}, \cdots, x_{n+1} is any $(n+1)$-tuple of points of S.

In this paper we obtain a converse of the above Denjoy theorem.
Let f and E be as above. Let $y_{i}=x+x_{i} h$ for $x \in(a, b)$. Set E_{i} $=\left\{x_{1}, \cdots, x_{i}\right\}$ and $Y_{i}=\left\{y_{1}, \cdots, y_{i}\right\}$ for $i=1, \cdots, n+1$.

Theorem. If
(i) $f_{j, E_{j}+1}(x)$ exists for all $j=1, \cdots, n$,
(ii) $\lim _{h \rightarrow 0}\left\{\left(y-y_{n+1}\right) V_{n+1}\left[f: y_{1}, \cdots, y_{n+1}, y\right]\right\}=\theta(x, y-x)$ where $\theta(x, y-x) \rightarrow 0$ as $y \rightarrow x$, then $f_{(n)}(x)$ exists and $f_{(n)}(x)=f_{n, E}(x)$.

Proof. By Newton's interpolation formula we have

$$
\begin{aligned}
f(y)= & f\left(y_{1}\right)+\left(y-y_{1}\right) V_{1}\left[f: Y_{2}\right]+\cdots \\
& +\left(y-y_{1}\right) \cdots\left(y-y_{n}\right) V_{n}\left[f: Y_{n+1}\right] \\
& +\left(y-y_{1}\right) \cdots\left(y-y_{n}\right)\left\{\left(y-y_{n+1}\right) V_{n+1}\left[f: y_{1}, \cdots, y_{n+1}, y\right]\right\} .
\end{aligned}
$$

For $h \rightarrow 0$, we obtain

$$
f(y)=f(x)+\cdots+(y-x)^{n} f_{n, E}(x) / n!+(y-x)^{n} \theta(x, y-x)
$$

Taking into account relation (1), the above result implies that $f_{(n)}(x)$ exists and $f_{(n)}(x)=f_{n, E}(x)$.

Remark. Under the assumption that $f_{n, E}(x)$ exists, the 2 nd condition of our theorem is equivalent to

$$
\lim _{n \rightarrow 0} V_{n}\left[f: y_{1}, \cdots, y_{n}, y\right]=\left(f_{n, E}(x) / n!\right)+\theta(x, y-x)
$$

This follows directly from the relation

$$
\begin{aligned}
& V_{n}\left[f: y_{1}, \cdots, y_{n}, y\right]-\left(y-y_{n+1}\right) V_{n+1}\left[f: y_{1}, \cdots, y_{n+1}, y\right] \\
& \quad=V_{n}\left[f: y_{1}, \cdots, y_{n+1}\right] .
\end{aligned}
$$

References

1. A. Denjoy, Sur l'integration des coefficients differentiels d'ordre superieur, Fund. Math. 25 (1935), 273-326.
2. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometrical series, Fund. Math. 26 (1936), 1-43.

University of Windsor, Ontario, Canada

[^0]: Received by the editors November 4, 1964.
 ${ }^{1}$ Research supported by National Research Council, Canada, Grant MCA-31.

