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1. In this paper we will give necessary and sufficient conditions

for a measurable function to be equivalent to one which is differenti-

able a. e. on a set E. The condition is in terms of Marcinkiewicz type

integrals which have also been recently the main objects in problems

of differentiability. The reader is especially referred to the important

paper on differentiability by E. M. Stein and A. Zygmund [8]. Their

results are crucial for our paper; in fact, our paper is essentially only

a slight refinement of their results and of a theorem due to Marcin-

kiewicz  [2].

Let Ig — [0, l], and let/: I0—*R he a measurable function, where R

is the set of real numbers. We will abbreviate the second symmetric

difference of / at x by A2f(x, t), i.e., A2f(x, t) =f(x+t) +f(x-t)-2f(x).
It will also be useful to retain the notation ex(t) = | A2f(x, t) | (2i)_1

introduced in [8]. We say that two functions are equivalent if they

differ on a set of measure zero. The measure of a set A will be denoted

by IAI. The function d>: R-+R is defined by <p(x) = 1 — | x|, if \x\ < 1,
and <f>(x) =0, \x\ ^ 1. We are now ready to state the main theorem of

our paper.

Theorem 1. A measurable function f: I0—*R is equivalent to one

which is differentiable a. e. on a measurable set EEIo if and only if for

almost every xEE there is n =vx>0 such that

a) rJs5-*<..
Jo    td>(ex(l))

We remark that (1) appears as a limiting case of

Jo       t       1 - ex(l)

It has been shown by E. M. Stein and A. Zygmund [8, p. 280]

that the finiteness of this integral a. e. in E is equivalent with the

existence of the ¿„-derivative a. e. in E.

It is an immediate consequence of a theorem due to Marcinkiewicz

[2] that if/ is differentiable a. e. on E, then for almost every xEE

there is 77 =vx>0 such that the sequence
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/•« \A2f(x,t)\p
(2) Jo iP+1       dt,       p = 2,3,...,

is bounded. We will show that (2) is also sufficient for/to be equiva-

lent to a function differentiable a. e. in E. By examples we will show

that the "boundedness" cannot be relaxed.

2. We will collect now some definitions and lemmas which will

prove to be useful. Let /: IB—*R be measurable, and let for yQR,

Ev= {x:f(x)>y}. For x0QIo define

g(xo) =inf{y: \EvÍM\  =o(\l\), as  |/| ->0, *o £ 2},

where I is the generic notation for an interval. The function g: Io—*R,

which can be defined for arbitrary functions by replacing "measure"

by "outer measure," was introduced in [l] and is called the upper

(measurable) boundary of /. The function g has the following immedi-

ate properties.

(Pi) f(x) =g(x) at every point x of approximate continuity of /,

and hence f(x) =g(x) a. e.

(P2) For each XoQIo and each e>0, n>0, the set {x: \x — x0\ <y

and |gOt)— g(xo)\ <e} has positive measure.

If /: Io-*R is a measurable function, we will denote by /*' (x) the

derivative of / at x neglecting sets of measure zero, i.e., there is a

set Nx, \NX\ =0, such that/*'(x) = lim^x[f(z) -f(x)](z-x)-\ zQNx.

Lemma 1. Letf: I0—»P be measurable, and assume that /*' (x) exists

xQE. Then f is equivalent to a function which is differentiable on E.

Proof. Let g be the upper boundary of /. Then g(x) —f(x) a. e.,

and, in particular, the equality holds for xQE. Let x0QE and let

e>0 be given. There exists S>0 and a set N, \n\ =0, such that

NQ(x0 — 8, Xo + S) and

«(«) - g(*o)
- xo | ¿ 5,       zQ N.

z — ¡Co
/*'(*)

We will show that N=0. If N^0, the property (P2) would imply

that the inequality

\g(z) - g(x0)
-/*'(*«) > e

z — x0

holds on a set of positive measure in (x0 — S, x0+5).

Lemma 2. Letf: Io-*R be measurable, and let EQI0. Assume that

for each xQE there is a set Nx such that (i) | Nx\ =0, (ii) A2f(x, t)=0(t)



1965] differentiability almost everywhere 1207

as t—>0, tENx- Then there exists a set NEh such that \ N\ =0 and

A2f(x, t)=0(t), x±tEN, for each xEE.

Proof. Let N be the set of all points in 70 at which / is not approxi-

mately continuous. Then \n\ =0, and the desired property readily

follows.

Remark. It is important to note that the set N above is indepen-

dent of xEE.

3. Let/: Io-^R be measurable and let EEh be measurable. It is

known [3] that the condition A2f(x, t) =0(t), xEE, implies that the

set of points in E at which f'„ (see, e.g., [6, p. 218]) exists has the

same measure as the set of points in E at which /' exists. We need a

slight variant of this theorem obtained by relaxing the condition 0(t)

to 0(t), ¡$JV„ \NX\ =0. In the conclusion, of course,/' is replaced

by/*'. The proof proceeds along the lines of [3]. The measurability

of certain sets will be established in much the same way as in [4]

which contains an extension of the above mentioned result in [3 ] to

several variables. Since the result is important for our purposes, we

will give the essential steps of the proof.

Lemma 3. Let f: I0-^R be measurable and let EEh be measurable.

Assume that for each xEE there is a set Nx such that (i) \NX\ =0,

(ii) A2f(x, t)=0(t) as i->0, i£A7*. If f'ap(x) exists for xEE, then

f'av(x) =/* (x) a. e. in E.

Proof. By Lemma 2 there is a set NEIo such that | iV[ = 0 and

A2/(jc, t) = 0(t), x±t&N, for each xEE. Let FiCF2C • • • be a

sequence of closed sets in I0 — N such that /| F¿ is continuous and

H=UFi has measure |/0|=1. Let us set E(k, j) = {xEHC\E:

\A2f(x, t)\ <k-t, OOál/ji x + tEH}. Then, as in [4], E(k, j) is
measurable and HC\E = \j\}E(k, j). Thus the relation f'ap(x) =/*' (x)

need only be verified at every point of density of E(k, j). We may

assume that 0 is such a point and that fap(0) =0. Let e>0 be given.

There is a measurable set EEE(k,j) such that 0 is a point of density

of E and

l/(*)-/(0)|   <(e/A)|*|,        xEE.

Let us now assume that x>0. The set Ax={xl:   (x'+x)/2EE,

0<x'<x, and \x'—x\ <ex} has measure

/'■        (x' + x\
X ( —-— ) dx' 2* ex,

U-O*    \     2     /
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where x(") is the characteristic function of E. Hence there is

0 <8 < 1/j such that AXC\E 7^0, 0 <x < 8. Thus, if 0<jc<ô and xQH,
then there is x'QAjT\E and

\f(x) -/(0) |  ¿ |2/(^-^) -/(O -/(*)

+ l/(0 ~/(0)|   <5ex.
I   ixf + x\

+2K—)-/m

Hence/*'(0)=0, and the proof is complete.

4. We are now ready to prove Theorem 1. Let us first assume that

there exists a function g: I0-+R equivalent with / such that g'(x)

exists a. e. in E. By [2], for almost every xQE there is <r = o-I>0

such that

(3) f
J o

-dt <  oo .

12

■at

We will show that the integral (1) is finite at every x at which

g'(x) exists, g(x)—f(x), and (3) holds. Since A2g(x, t)=o(t), and

f(x)=g(x) a. e., there is 0<rj<o-, and Nx, 12VX| =0, such that

|A2/(x, 0| <t, 0<t¿r¡, tQNx. Thus for we2,

r*\A*ñx,ty\»d    i r" \A2f(x,t)\

J0        2ntn+1 = 2" Jo t

from which we infer that

nTiJo 2"t»+l Jo  \ZZ       2"i»+i     /

The last integral is the same as the integral (1).

Conversely, assume that the integral (1) is finite for almost every

x. This implies that ex(t) < 1 for almost all í£(0, r¡x). Thus <p(ex(t)) < 1

for almost all tQ(0,r¡x), and hence

r^Ldt¿r-^-dt,
Jot Jo    t<P(tx(t))

By [8, p. 253] / has a derivative in L2 at almost all points of E, and

hence f'ap(x) exists a. e. in E (for an explicit statement of this see

e.g. [5]). Since A2/(jc, t) =0(0, tQNx, \ Nx\ =0, we have by Lemma 3
that /*' (x) exists a. e. in E. Application of Lemma 1 completes the

proof.
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Using the same type of argument one can prove the following

theorem.

Theorem 2. A measurable function f: I0-^R is equivalent to one

which is differentiate a. e. on a measurable set EEIo if and only if for

almost every xEE there is «=»x>0 such that the sequence (2) is

bounded.

Proof. The necessity is due to Marcinkiewicz [2]. For the suffi-

ciency simply observe that the boundedness of (2) at a certain x

implies that | A2f(x, t) | = Mt, 0 <t<rj, except for t belonging to a cer-

tain set Nx of measure zero, where M> 1 is the bound of the sequence

(2). As above, the finiteness of the first term of the sequence (2) im-

plies the existence of f'ap(x) a. e. in E, and hence the Lemmas 3 and

1 complete the proof.

5. The Theorem 2 raises the natural question whether or not the

boundedness of the sequence (2) can be relaxed to either (i) the

lim sup as p—rco is finite or (ii) each term in the sequence is finite.

We will show that the answer is negative in both cases.

(i) Let a(t) = (log l/<)-1'2, and consider the lacunary trigonometric

series

_    / 1 \ sin 2nx

By [8, p. 250] the function/(x) is almost nowhere differentiable and

satisfies A2f(x, t)=0(ta(t)) for each x. From [8, p. 252] we infer that

f" \A2f(x,t)\2
I     -dt = 00

Jo P

for almost all x and any «>0. However, for «>2 and n small,

Jo tn+1 Jot J0       t

where M is some constant.

(ii) LetT(x) = 2-1'*, x>0,andlet^ = U[l/«, 1/m+t(1/2»)]. Then

A is a union of disjoint closed intervals such that | ̂ 4n/| =o(t(| j\ ))

as I /| —>0, OEJ, where / is the notation for an interval. We need the

following lemma.

Lemma 4. Let C be closed and nowhere dense in I0, and let G< = (a,-, £>,•),

i = 1,2, • • • , be its complementary intervals. Then there exists A EUGi

such that (i) A is a union of disjoint closed intervals, (ii) CEA— A,
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where A is the closure of A, (iii) |^4nj| =o(t(|/|)), as J—*x, xQJ,

for any xQC.

Proof. Let AíQGí be the set constructed relative to a,- the same

way as A was constructed above relative to 0. There exists ô,->0 such

that \J\ ¿8i, atQJ, implies \AiC\j\ ¿(1/2^(1 j\). We may also
suppose that 5<<(l/2i)r(è,—a¡—í,-). Let A* =AiC\[ai, a<+5i], and

let A — \}A*. An easy computation establishes (iii) (see e.g. [S]).

We are now ready to prove the following theorem.

Theorem 3. Let C be a closed nowhere dense subset of I0 of positive

measure. Then there exists a measurable function f: Io—*R such that

(i) fl0(\A2f(x, 0|nA"+1) dt< oo, n = 2, 3, ■■■, for almost all xQC,

and
(ii) if g is equivalent with f, then g is not differentiable at any point

of C.

Proof. Let AQIo — C be the set constructed in Lemma 4, and let

/be the characteristic function of A. It is clear that (ii) is satisfied.

Using [8, p. 280], we only need to show that for xQC,

{-/J/(* + 0M|   *=o(h),       n = 2,3,---,

i.e.,/has a ¿„-derivative, which is zero, at each xQC. Let xQC, and

let Ao= {a — x: aQA ]. Then

f   \f(x + t)\»dt=  \A0n[-h,h]\   = o(r(2h)),
J -h

and so is o(hn+1).

Bibliography

1. H. Blumberg, The measurable boundaries of an arbitrary function, Acta Math.

65 (1935), 263-282.
2. J. Marcinkiewicz, Sur quelques intégrales du type de Dini, Ann. Soc. Polon.

Math. 17 (1936), 42-50.
3. -, Sur les séries de Fourier, Fund. Math. 27 (1936), 38-69.
4. C. J. Neugebauer, Symmetrie and smooth functions of several variables, Math.

Ann. 153 (1964), 285-292.
5. -, Smoothness and differentiability in Lp, Studia Math. 25 (1964), 81-91.
6. S. Saks, Theory of the integral, Warszawa-Lwow, 1937.

7. E. M. Stein and A. Zygmund, Smoothness and differentiability of functions,

Ann. Univ. Sei. Budapest, Sectio Math. 3-4 (1960-1961), 295-307.
8. -, On the differentiability of functions, Studia Math. 23 (1964), 247-283.
9. A. Zygmund, Trigonometric series, 2 vols., 2nd. ed., Cambridge Univ. Press,

Cambridge, 1959.

Purdue University


