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A. C. LAZER

G. Prodi [5] has shown that if \imx^+x p(x) = + & and if p(x) is

nondecreasing, then there exists at least one nontrivial solution of

the differential equation

(L) y" + p(x)y = 0

which tends to zero as x tends to infinity. In this note we will give

another condition which guarantees this same property. Although

Prodi's result follows from Theorem 2, below, when p(x) is assumed

to be absolutely continuous, our methods of proof will be entirely

dissimilar from those used in [5]. For further literature on the

asymptotic behavior of solutions of (L) under the hypothesis that

p(x)—»+00 as x—»+<», the reader may consult [2, §5.5]. A more

recent result is contained in [3].

All integrals appearing in this note are Lebesgue integrals.

Theorem 1. If p(x) is positive and absolutely continuous on any

finite subinterval of the half-axis I:a¿x< + <x>, and if for every solu-

tion y(x) of (L), limx^.+x fa(y'/p)2p'dt exists and is finite, then there

exists at least one nontrivial solution of (L) which tends to zero as x tends

to infinity.

Proof. Since p(x) is assumed to be absolutely continuous on any

finite subinterval of I, p'(x) exists almost everywhere on 2. More-

over, for any solution y(x) of (L), the function

(1) G[y(x)) m HJ^J  + (y(x))2
P(x)

is absolutely continuous on any finite subinterval of 2,

/y'(x)\2dGb(x)\ = //(«)>

dx \p(x)j

almost everywhere, and for x>a,

'dt
■ P '

(2) G[y(x)] - G[y(a)] - £" U-Jp'a

(See [4, p. 255].) By the conditions of the theorem lim^+a, G[y(x)]
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exists and is finite, and since 0^(y(x))2^G[y(x)], we infer immedi-

ately that all solutions of (L) must be bounded on /. Let Ui(x) and

U2(x) be two linearly independent solutions of (L) which satisfy the

condition

(3) Ui(x) Ul (x) - Us{x)Ul (*) m 1.

We may suppose that Ui(x) does not tend to zero as x tends to

infinity. Since p(x)—+ + co all solutions of (L) are oscillatory, in other

words, vanish for arbitrarily large values of *. If xi<x2<x3 • ■ ■ be

the successive relative maximum points of the solution Ui(x), then

(4) £7/0«) = 0,       G[Ui(xn)] = (Ui(xn))2

and

(5) lim xn = + =o.
n—»+ao

Therefore, since limI^+00G [Ui(x) ] exists, and Ui(xn) > 0, lim„_+00Ui(xn)

exists and by the above assumption is equal to a positive number c.

Let N be so large that Ui(xn)>c/2, for n^N. From (3) and (4) it

follows that

(6) | U{ (Xn) I   á2/c,        «èTv-.

Since t72(x) is bounded on I, there exists a sequence of integers {«,}

such that the sequence { U2(xnj)} converges to a number b. We con-

sider the nontrivial solution

Z(x) = U2(x) - (b/c)Ui(x).

From the above we see that

lim   Z(xn,) = 0
n,--»+»

and from (4) and (6)

\Z'(Xn,)\   =   | Ul(xn,)\   £2/c.

Hence,

0  g  G[Z(xn,)]   Ú  -^~+(Z(Xn,))2,
C2p(Xn,)

for Uj^N, and since limx^+x p(x) —+ &, it follows by (5) that

limni_+«, G[Z(x„y)] = 0. As was shown above, limx_+00 G[Z(x)] exists

so that lim^+oo G[Z(x)] =0. Hence, from the inequality 0^(Z(x))2

^G[Z(x)], we see at once that limI<+00 Z(x) =0. This completes the

proof of Theorem 1.
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Theorem 2. If p(x) is positive, absolutely continuous on every finite

subinterval of the half-axis I: a ¿x < + oo, limc+.o p(x) = + «°, and

lira -dtim
■>+«>   Ja

is finite, then there exists at least one nontrivial solution of (L) which

tends to zero as x tends to infinity.

Proof. We introduce the following notation :

p'(x) |  + p'(x)
(p'(x))+ =

(*'(*))- =

2

p'(x)\  -p'(x)

2

To prove Theorem 2, it is sufficient, by Theorem 1, to show that

lim     f  (—)p'dt
r^+»   Ja   \pj

exists and is finite for every solution y(x) of (L). If y(x) is any solu-

tion of (L), then by (1) and (2)

\y'(x)]2     [y'(x)]2 .       ,
0 ¿ ^ ¿ ^ + (y(x))2 m G[y(x)}

p(x) p(x)

-flWd-j;(3V«+j;®'<w-*
so that

(7)     ^iGbwi+n^w*
P(X) Ja    \p/

(8) £ (-) V)+ dt ¿ G[y(a)} + £ (~)V)" dt.

By application of Bellman's lemma [l, p. 35] to the inequality (7),

we infer that

msebw]^(r^TM)
P(X) \Ja P /

áG[y(a)]exp(J" — dt).
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By hypothesis fâ((P')~/P) dt is finite, and hence [y'(x)/p(x)]2 is

bounded on [a, <»]. Thus, limx^+CB fl(y'/p)2(p')- dt exists and is

finite, and by (8) the same statement holds for

hm     fX(-)\p')+dt.
»-.+ «    Ja    \pj

Hence

lim     f  (—)p'dt
I-.+ » Ja \p/

exists and is finite. The assertion in Theorem 2 now follows from

Theorem 1.
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