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BANACH ALGEBRAS OF SCALAR-TYPE ELEMENTS

BERTRAM WALSH

In [5] H. Schaefer asked whether a locally convex algebra having

the property that each of its elements is "spectral" (i.e. can be repre-

sented as the integral of some measurable function with respect to

some spectral measure [is of "scalar type" in the sense of Dunford])

must necessarily be a commutative algebra. This note answers the

question only for Banach algebras, but shows that the answer is

affirmative under a hypothesis less restrictive than that which

Schaefer suggests, and also (via a theorem of Katznelson [3]) that

in fact a Banach algebra satisfying this hypothesis is automatically

isomorphic to Q(M), M its maximal ideal space. The result may also

be viewed then as a variant of Katznelson's, in which commutativity

and semisimplicity are not required a priori.

For simplicity's sake the presence of an identity is assumed in all

algebras discussed below, and homomorphisms are assumed to carry

identities to identities. The modifications necessary to dispense with

these assumptions are straightforward.

Let 21 be a real or a complex Banach algebra. We shall say that an

element aQ 31 is prescalar under the following circumstances :

(1) If 21 is a real Banach algebra, we require that the spectrum of

a (as defined for real Banach algebras via complexification—see [4,

p. 28]) be real, and that there be a homomorphism ha:eR(<r(a))—»21

(where as usual QR(ff(a)) is the sup-norm algebra of continuous real-
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valued functions on a(a)) which sends the identity function on a(a)

to a; letting z denote the identity function, we can write this ha(z) =a.

(2) If 21 is a complex Banach algebra, we require that there be a

homomorphism ha:Q,(<j(a))—»21 for which ha(z)=a, where z is the

identity function on cr(a). (Of course z here is not the ring identity

of the continuous-function ring, but the function for which 2(A) =X.)

For example, if a is a scalar-type element of £(£) where E is a

Banach space, then a is a prescalar element of £(E) in the uniform

norm, as in [l].

It is immediate that a prescalar element is a topological nilpotent

if and only if it is zero, because if cr(a) = {o}, then the identity func-

tion and the zero element of Q(o(a)) (oreR(a(a)) respectively) are the

same, so a = ha(z) =ha(0) =0. As a consequence we have the

Proposition. If 21 is a Banach algebra each of whose elements is

prescalar, then for each o£2í any homomorphism ha as in the definition

of prescalarity is automatically continuous.

Indeed, since the only topological nilpotent in 21 is zero, the closure

of ka[ß(o-(a))] (or its real counterpart) in 21 is semisimple (4, p. 57].

Consequently ha is continuous by [4, p. 75 J.1

One may thus safely assume ha continuous in the following

Proposition. If a is a prescalar element of 21 for which a homo-

morphism ha rendering a prescalar is continuous, then whenever 3 is

a closed one-sided ideal of 21 with akES for some k, aGS also.

Indeed, consider the closed ideal /î,!"1^]^ Q(a(a)) (or its real

counterpart). The closed ideals in Q(a(a)) are precisely the sets of

functions vanishing on fixed closed subsets of o(a) (i.e. are the kernels

of their hulls; cf. [4, p. 193]). By hypothesis zhEha~1[^], and 2* and

2 have the same set of zeros, whence zEhr1^], or a = ha(z)E3-

General information on elementary Jacobson ring structure theory,

particularly the density theorem, and the relations of the algebraic

structure to the topological in Banach algebras (on which the proof

of the next theorem depends) may be found in [2] and [4].

Theorem. Let % be a Banach algebra each of whose elements is pre-

scalar. Then 21 is semisimple and commutative.

Proof. We have already seen that 21 can have no topologically nil-

potent elements; since every element of the radical of an algebra has

1 The proof that these homomorphisms have closed graphs is quite straight-

forward ; the reader may find a direct proof in less time than it takes to reach for his

copy of [4].
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zero spectrum, 21 must be semisimple. Now let 8 be a maximal left

ideal of 21 and 21—8 the difference Banach space; if A is the ring of

those endomorphisms of the additive group of 21 —8 (no topology)

which commute with all the operators induced on 21 — 8 by the left

regular representation of 21 (i.e. the ring of 2I-module endomorphisms

of 21 — 8), then Schur's lemma says that A is a division ring and the

Jacobson density theorem says that if »1, v2 are A-linearly independent

elements of 21—8 and wi, w2 are any elements of 21—8, then there

exists a£2l for which asVi=Wi, t' = l, 2, where ag is the left regular

representation of 21 on 21—8.2 It follows that if all elements of 21 are

prescalar, then 21 — 8 can have A-dimension at most 1, thus exactly 1.

For if vi and Vi were A-linearly independent in 21 — 8, there would exist

a£2í with a%vi = Vi, a?z>2 = 0. The left regular representation of 2Í on

21—8 is continuous, so the annihilator 3= {6|6£2l, 6g»i = 0} of vi in

21 is a closed left ideal, and since (a2)svi = as(a^Vi) =as>Vi = 0, a2Q$. By

the proposition above, a£3 also, so z/2 = a%vi = 0 contrary to its choice.

Thus 21 is represented on 21—8 as an algebra of linear transforma-

tions of a one-dimensional vector space ; since this algebra is transitive

on the nonzero vectors of 21 — 8, it contains an inverse for each of its

nonzero elements, i.e. is a normed division algebra, hence is the reals,

complexes or quaternions. If 21 is a complex algebra the complex

numbers are the only possibility for this representation ; if 21 is a real

algebra and were represented as either the complexes or the quater-

nions, then there would exist an a£2l with (a¿)2= — 1, contrary to

the invertibility of 1+z2 ineR(<r(a)). Thus 21 is represented on 21 — 8

as the reals when 21 is real and as the complexes when 2Í is complex;

in either case it is represented as a commutative algebra, and there

being sufficiently many of these representations to distinguish ele-

ments of 21, 2Í is commutative.

Corollary. If 21 is a real Banach algebra each of whose elements is

prescalar, then every maximal ideal of 21 is real, i.e. its quotient ring

is the real numbers.

Thus under the hypotheses of the theorem each maximal ideal of

21 can be identified with a homomorphism of 21 into its scalar field, and

21 can be identified with its Fourier transform algebra 21* on the com-

pact Hausdorff space M oí such homomorphisms. Prescalarity of all

elements of 21 implies that continuous functions operate on 2T in

the sense of Katznelson  [3], since for a£21 and mQM one has

* Actually A must already be one of the three normed real division algebras [4,

p. 61 ], but this fact plays no part in what follows.
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[ha(f)V(m)=m(ha(f)) = [h*(m)](f); but h*(m) is evaluation at

[h*(m)](z) = m(ha(z)) = m(a) = a"(m) E o~(a), so [ha(f)*(m)

=f(a*(m)) for any mEM, and ha(f) is the result of / operating on a

in the sense of [3]. Thus by the principal theorem of [3] (which is

stated for complex algebras but proved for real ones, so applicable

in both cases) we have

Theorem. If 21 is a Banach algebra each of whose elements is pre-

scalar, then 21 is commutative and semisimple, and isomorphic to QR(M)

orQ(M), M the space of maximal ideals of 2I.3
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* The referee has pointed out that this theorem and [l, Theorem 18] imply the

existence of a simultaneous resolution of the identity for SI if SI is an algebra of

bounded linear operators on a reflexive Banach space. The extension of this fact to

weakly sequentially complete locally convex sDaces follows from the principal results

of [6].


