ON THE CHARACTERISTIC ROOTS OF MATRICES¹

DOUGLAS E. CRABTREE

Let $A = (a_{ij})$ be an $n \times n$ complex matrix. For $i = 1, 2, \dots, n$ and p > 0 define $R(i, p) = (\sum_{l=1; i \neq l}^{n} |a_{il}|^{p})^{1/p}$. It is well known [2] that the characteristic roots of A lie in the union of the disks

(1)
$$|a_{ii}-z| \leq R(i,1)$$
 $(i=1,2,\cdots,n).$

A. Brauer [3] improved this result by replacing these disks with the n(n-1)/2 ovals of Cassini

(2)
$$|a_{ii}-z| |a_{jj}-z| \leq R(i,1)R(j,1)$$
 $(i,j=1,2,\cdots,n;i\neq j)$.

A. Ostrowski [4] extended (1) as follows:

THEOREM A. Let k_1, k_2, \dots, k_n be positive numbers such that

(3)
$$\sum_{i=1}^{n} (k_i + 1)^{-1} \leq 1.$$

Let p and q be chosen so that

(4)
$$1/p + 1/q = 1$$
 and $p, q > 1$.

Then the characteristic roots of A lie in the union of the disks

(5)
$$|a_{ii}-z| \leq k_i^{1/q} R(i, p) \quad (i = 1, 2, \dots, n).$$

In this paper we improve Theorem A in the same way that Brauer improved (1). It is also shown that our result generalizes Brauer's theorem (2).

THEOREM. Let $A = (a_{ij})$ be an $n \times n$ complex matrix. Let k_1, k_2, \dots, k_n , p and q be positive numbers satisfying (3) and (4). Then the characteristic roots of A lie in the union of the n(n-1)/2 ovals of Cassini

(6)
$$|a_{ii} - z| |a_{jj} - z| \leq (k_i k_j)^{1/q} R(i, p) R(j, p)$$

$$(i, j = 1, 2, \dots, n; i \neq j).$$

We first prove the following lemma:

Presented to the Society, August 28, 1964 under the title A limit for the characteristic roots of a matrix; received by the editors October 26, 1964.

¹ This research was supported in part by a National Science Foundation Cooperative Graduate Fellowship, and is part of a dissertation presented to the University of North Carolina at Chapel Hill.

LEMMA. Let a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n $(n \ge 2)$ be non-negative numbers such that

(7)
$$\sum_{i=1}^{n} b_{i} \leq \sum_{i=1}^{n} a_{i} = 1.$$

Then there exist two integers u and v such that

$$a_u a_v (1 - b_u - b_v) \ge b_u b_v (1 - a_u - a_v).$$

PROOF. By (7) we may pick u so that $b_u \le a_u$. If the lemma is false, we may assume that

$$a_u a_j (1 - b_u - b_j) < b_u b_j (1 - a_u - a_j)$$
 $(j = 1, 2, \dots, n; j \neq u).$

Hence

$$a_i(1-b_u) < b_i(1-a_u)$$
 $(j=1, 2, \dots, n; j \neq u).$

By (7) we have

$$a_j \sum_{t \neq u} b_t < b_j \sum_{t \neq u} a_t$$
 $(j = 1, 2, \dots, n; j \neq u).$

Adding these inequalities, we obtain the contradiction

$$\sum_{j\neq u} a_j \sum_{t\neq u} b_t < \sum_{j\neq u} b_j \sum_{t\neq u} a_t.$$

PROOF OF THE THEOREM. Let θ be a characteristic root of A, with a corresponding characteristic vector (x_1, x_2, \dots, x_n) normalized so that

(8)
$$\sum_{i=1}^{n} |x_i|^{q_i} = [1.$$

From the equations

$$\sum_{j=1}^{n} (a_{ij} - \theta \delta_{ij}) x_j = 0 \qquad (i = 1, 2, \cdots, n)$$

(where δ is the Kronecker symbol), it follows that

$$|a_{ii} - \theta| |x_i| \leq \sum_{t=1: t \neq i}^n |a_{it}| |x_t| \qquad (i = 1, 2, \cdots, n).$$

Hence

$$|a_{ii} - \theta| |a_{jj} - \theta| |x_i| |x_j| \leq \sum_{t=1; t \neq i}^{n} |a_{it}| |x_t| \sum_{s=1; s \neq j}^{n} |a_{js}| |x_s|$$

$$(9) \qquad (i, j = 1, 2, \dots, n; i \neq j).$$

Applying Hölder's inequality [1, p. 19] and equation (8), we obtain

(10)
$$|a_{ii} - \theta|^{q} |a_{jj} - \theta|^{q} |x_{i}|^{q} |x_{j}|^{q}$$

$$\leq R(i, p)^{q} R(j, p)^{q} (1 - |x_{i}|^{q}) (1 - |x_{j}|^{q})$$

$$(i, j = 1, 2, \dots, n; i \neq j).$$

Now we may assume that for each i, $|x_i|^q \neq 1$, since otherwise $\theta = a_{ii}$ for some i and then clearly θ lies inside the ovals (6). Letting $|x_i|^q = a_i$ and $(k_i + 1)^{-1} = b_i$ for $i = 1, 2, \dots, n$, we see by the lemma that there exist integers u and v for which

$$|x_u|^q |x_v|^q (1 - (k_u + 1)^{-1} - (k_v + 1)^{-1})$$

$$\geq (k_u + 1)^{-1} (k_v + 1)^{-1} (1 - |x_u|^q - |x_v|^q).$$

It follows that

$$|x_u|^q |x_v|^q k_u k_v \ge (1 - |x_u|^q)(1 - |x_v|^q).$$

Since the right side of (11) is positive, $|x_u|^q |x_v|^q > 0$. Thus (10) and (11) imply

$$|a_{uu} - \theta| |a_{vv} - \theta| \leq (k_u k_v)^{1/q} R(u, p) R(v, p),$$

and the theorem is proved.

Consideration of the case $\theta = 0$ in the theorem leads to the following corollary:

COROLLARY 1. The $n \times n$ matrix A is nonsingular provided that positive numbers k_1, k_2, \dots, k_n , p and q satisfying (3) and (4) can be found such that

$$|a_{ii}||a_{jj}| > (k_ik_j)^{1/q}R(i, p)R(j, p)$$

for each pair $i, j=1, 2, \cdots, n; i \neq j$.

Consideration of the limiting case where p approaches 1 and q becomes infinite yields Brauer's theorem (2). If we reverse this procedure and let p become infinite while q approaches 1, we obtain the following corollary:

COROLLARY 2. Let $A = (a_{ij})$ and k_1, k_2, \dots, k_n be as above. Let

 $m_i = \text{Max}_{i \neq i} |a_{ii}|, i = 1, 2, \dots, n$. Then the characteristic roots of A lie in the union of the ovals

$$|a_{ii}-z||a_{jj}-z| \leq k_i k_j m_i m_j \qquad (i,j=1,2,\cdots,n; i \neq j).$$

PROOF. Since $R(i, p) \le (m_i^p(n-1))^{1/p} = m_i(n-1)^{1/p}$, the result is immediate.

From Corollary 2 we obtain the following nonsingularity condition:

COROLLARY 3. The $n \times n$ matrix $A = (a_{ij})$ is nonsingular provided that positive numbers k_1, k_2, \dots, k_n satisfying (3) can be found such that

$$|a_{ii}||a_{jj}| > k_i k_j m_i m_j$$

for each pair $i, j = 1, 2, \dots, n; i \neq j$.

REFERENCES

- 1. E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1961.
- 2. Alfred T. Brauer, Limits for the characteristic roots of a matrix, Duke Math. J. 13 (1946), 387-395.
- 3. ——, Limits for the characteristic roots of a matrix. II, Duke Math. J. 14 (1947), 21-26.
- 4. A. M. Ostrowski. Sur les conditions générales pour la régularité des matrices, Rend. Mat. e Appl. (5) 10 (1951), 156-168.

University of Massachusetts