
PROOF OF SOME CONJECTURES ON
COHOMOLOGICAL DIMENSION1

JAMES AX

Introduction. Let k be a field of characteristic q (= prime or 0)

and let r be a non-negative integer. Then k is said to be CT if and only

if every (homogeneous) form of degree din n variables over k has a

nontrivial zero over k if n>dr. In Serre [3, Chap. II, Corollary to

Proposition 8] the following result is obtained: If k is G then dim(&)

^1 and [&:i5] = l or q. Here dim(&) is defined cohomologically;

dim(&)gl is equivalent to the nonexistence of noncommutative

finite dimensional division algebras over k. Serre then remarks:

"On ignore si la réciproque du corollaire précédente est vrai—c'est

peu probable."

Approximately this same problem had been previously raised by

Nagata [5, Problem 6]. Namely Nagata noted that if k is G then

A7!,/*: L—>k is surjective for all finite extensions L/k. Nagata then

asked if the converse is true. The approximate equivalence of these

problems follows from Serre [Chap. II, Prop. 5], and the fact that

the surjectivity of the norm implies [k: kg] = 1 or q.

In §1 we answer both these questions in the negative by exhibiting

a field R of characteristic zero of dimension 1 which is not C\. This

implies, for all fsÈl, the existence of fields of dimension r which are

not Cr. But the situation is worse than that: R is quasifinite in

the sense of Serre [2, Chap. XIII, §2], and for all r, R is not Cr. The

interest in these considerations stemmed from a possible relation

with Artin's conjecture which states: If ki is the maximal abelian

extension of the rationals then ki is G; if k2 is a totally imaginary

number field or a £-adic field then k2 is G. Indeed, dim(&i) = l and

dim(&2)=2 as follows from Serre [Cor. to Prop. 9, Cor. to Prop. 12,

Prop. 13].

We denote by Gk, the galois group of an algebraic closure h oí k

over k. We also denote the cohomological ^-dimension of Gk by

cdp(Gk). In §2 we solve the problem raised in the following remark of

Serre [3, Chap. II, §4.2]:
"Supposons que cdp(Gk)=<x>. Il est probable que l'on a alors

cdP(Gki) = oo pour toute extension transcendante pure k' oí k, mais

je ne vois pas comment le démontrer."

Serre then raises the corresponding problem for a field complete
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under a discrete valuation with residue class field k. It is this problem

we solve first in the Corollary to Theorem 2 ; the desired fact about

purely transcendental extensions is then deduced in the Corollary to

Theorem 3.

1. The field R. We first introduce some simple devices involved in

the construction of R. Let « be a positive integer and let A be a field

of characteristic zero.containing all of 1. Set B=A((s))(sllm: (m, n)

= 1), the field obtained from the field of formal power series A((s))

over A by the adjunction of the with root s1/m of s for all positive

integers m prime to «. Then the galois groups of B/B and A/A are

related by

GB = 0 Zp 8 G a
p\n

where Zp is the ¿>-adic integers. We omit the proof of this which is

similar to, but simpler than, the considerations of §2. Let Z_„ be the

additive subgroup of the rationals consisting of the fractions e//with

(/, «) = 1. Let ord: B—*Z_„U {oo } be the natural valuation of B with

residue class field A. Suppose that H(Ui, • • • , U,) is a form of degree

d over A with no nontrivial zero over A. Then H has no nontrivial

zero over B; in fact if biEB, i=\, ■ ■ • , v, and if not all the i>< are

zero then

ord(H(bh ■ • ■ ,bv))E dZ-n.

To see this, let bEB be such that

ord (b) = min (ord (b,)).
i

Letting Oi = bi/b, we have

ord(H(bi, ■ ■ ■ ,bv)) = ord(bdH(ai, ■ ■ ■ , av))

= d ord(b) + ord(H(ai, • • • , av)).

Denoting passage to the residue class field A EB oí B by a bar we

have, since ord (o,) =0 ior i = l, • • • , v and ord (a,) = 0 for some i,

H(äi, ■ • ■ , äv) 7e 0 in A.

Thus ord(H(bu • • • , bv)) =d ord(&)€<*£-»•

It is relatively simple to construct a field Y such that dim(F) = 1

while Y is not &. We carry this out first since it involves the essential

idea behind the construction of R; it turns out that Y is C2. In this

section F denotes a fixed algebraically closed field of characteristic

zero. Set C= F((s))(s1'n: (m, 6) = 1) and then set
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F = CÍO))«1'»: (», 5) = 1).

Thus GY = Zi®Z%®Zt so that by Serre [3, Chap. II, Prop. 5],

dim(F) = 1. We will show that Y is not G by constructing a form

H(Zi, • • • , Zio)£F[Z] of degree 5 with no nontrivial zero over Y.

Let J(Ui, Ui) (resp.: K(Ui, t/2, [73)) be a form of degree 2 (resp.: 3)

over C with no nontrivial zero over C, e.g. take / (resp. : K) to be a

norm form of C(s1'2)/C (resp.: C(s1'3)/C). Then L(E2lf E2,)

= J(Ui, Ui)K(Ui, Ui, 0) is a form of degree 5 over C with no non-

trivial zero over C. It follows from the introductory remarks of this

section that

ord(£(«i, «0) £ 5Z_5 if («,, u2) £ Y2 - 0,

where ord: Y-^Z^, U{ » } is the natural valuation with residue class

field C. We define

H(Z) = 22(2!, • • • , Z10)

(1) = L(Zi, Zi) + tL(Z3, Z4) + t2L(Z6, Z6) + t3L(Zh Z8)

+ /<L(Z9, Z10).

If we substitute z£ F10 —0 for Z in (1) then some summand is non-

zero and each nonzero summand has a different ord in Z_6, different

even modulo 5Z_6. Thus H has no nontrivial zero over Y.

We now define P. We define Fp inductively for p a prime. Let

Fi = F((ti))(t2i/'>: (n, 2) = 1). If q is the largest prime less than p we set

Fv = Fq((tp))(tp/n:(n, f) = l). Finally, we set P = inj \imp Fp. Thus

Gr = YLp Zp, i.e. R is quasi-finite.

Theorem 1. R is not CTfor any r.

Proof. We fix r and show P is not Cr. We pick n>r and then a

such that 0<a<l and 22"-oa' = r- We are going to make use of

some known results in analytic number theory; it is possible to avoid

their use at the expense of complicating the argument with unpleasant

details.

Let ?» be a non-negative integer. We shall say a prime p is m-

representable if m = 0 or if p=pi+pi+p3, p"<pi<pi<ps where the

pi are (m — l)-representable primes. To complete the proof of Theo-

rem 1, it suffices to establish the following two lemmas.

Lemma 1. If p is m-representable there exists a form H of degree p in

at least px variables, X = 22™~ol «S over Fp with no nontrivial zero over

Fp and hence over R.

Lemma 2. For all m there exists c such that if p>c then p is m-

representable.
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Proof of Lemma 1. We may assume m — \, the lemma true for

m — 1, and that

(2) p = pi + p2 + pz,       p" < pi < p2 < pi,

with pi an (m — \)-representable prime. By induction, there exists a

form Hi( Ui, ■ • • , U,t) of degree pi over FPi with no non trivial zero

over FPi, where

m-2

Vi =  pi  £ Pi, U  =   2Z  «*•
»=-0

By setting extra variables equal to zero, we may assume that vi=v¡

=f3 (=v, say). Thus

m— 2

(3) v = p\,       ß = 2Z «*'•

Set K(Ui, ■ ■ ■ , Uv)=Hi(Ui, ■ ■ -, Uv)-H2(Ui, • • • , Uv)-Hs(Ui,
■ • • , Uv)EFp,[Ui, ■ ■ ■ , Uv]. Then set

H(Zi, • • • , Zpv) = R(Zi, • • • , Zv) + lpK(Zv+i, • • • , Z2v)

p—i
+   •  ■   ■  + tp     K(Z(p-i)V)  •  •   ■ , Zp,)

E FP[Zi, ■ • • , Zp,].

H is a form of degree pi+p2+pi=p in pv variables over Fp. It follows

as before that H has no nontrivial zero over FP. But by (2) and (3),

pv = ppi ^ p       = p .

This proves Lemma 1.

Proof of Lemma 2. By induction, it suffices to prove the lemma

when «i = l. It follows from Vinogradov [4, Chap. X, Theorem] that

there exists b > 0 such that the number of representations of an odd

integer N>b as N = pi+p2+p3 with pi^p2úpi, p, prime, exceeds

A72/(log A7)4. Now the number of representations of N as 2«i+«2 with

«< a positive integer is at most N. Also the number of representations

of N as A7 = «i+»2+«3, ni = N", ni a positive integer is at most N1+a.

Thus, if N is an odd integer, N>b, then the number of representations

of iVas

N = pi + pi + Pi, Na < pi < Pi < ps,      Pi prime

exceeds

(4) N2/(log N)*- N - N1+°.
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Since a<l there exists c>b such that if N>c then the expression

(4) is positive. This completes the proof of Lemma 2.

This concludes the proof of Theorem 1.

It is equally possible to provide similar examples in any character-

istic.

We note that if we neglect the prime 2 in the construction of P,

then, in the notation of Serre [3, Chap. II, §4.5], the resulting field

R' is Ci but not G- To see this, observe that

6V « II Zp
p^2

so that R' has no quadratic extensions. Thus every quadratic form

(in 5 variables) over P' has a nontrivial solution over R'. Also

dim(P') = 1 so that by Serre [3, Chap. II, Prop. 5], the condition on

the finite dimensional division algebras over P' is vacuously satisfied.

Finally, the proof that for all r, R is not Cr works equally well for R'.

2. On transcendental extensions. By a Hensel field W, we mean a

field W with an additive valuation ord into an ordered abelian group,

ord(W), such that Hensel's lemma holds.

Lemma 3. Let W be a Hensel field such that the residue class field W

of W is algebraically closed and ord(W0 is divisible. If q=char(W),
then Gw is a pro-q-group. If q = 0, the last statement is understood

to mean that Gw = 1, i.e. W is algebraically closed.

Proof. For the "complete" case (W algebraic over a complete field

valued in the integers Z) this follows from Hubert theory as in Serre

[2, Chap. IV, §2, Cor. 3 to Prop. 7]. We give a direct argument,

similar to the standard proof that the field of formal Puiseaux expan-

sions over an algebraically closed field of characteristic zero is alge-

braically closed. We may assume W is perfect. Let H be a g-Sylow

subgroup of Gw- Let aQW he fixed by H. Then q\m= \W(a): W],

and it suffices to show m = l. Let F(X) = 22£o /¿•X'i be the monic

irreducible polynomial for a over W. Since m¿¿0 in W, vie may as-

sume /m_i = 0 by replacing a by a—fm~i/m. Since W is a Hensel field,

each root of IF has the same ord value y [l, Chap. VII, (43.2) (2)].

Since ord(W) is divisible, there exists aQW such that ord(a)=y.

Thus we may assume 7 = 0 by replacing a by a/a. We now claim that

f(X) factors into two relatively prime factors in W[X] ii m>I. In-

deed, otherwise the fact that W is algebraically closed implies there

exists bQ W such that ord(&) =0 and f(X) = (X-h)m. But this is im-

possible since the coefficient of Xm_1 on the right is not zero in W
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because q\m. This completes the proof since if f(X) factors into two

relatively prime factors in JF[X], then by Hensel's lemma, f(X)

factors in JF[X], contradicting the irreducibility of f(X).

Theorem 2. Let Vbea Hensel field valued in the integers Z, such that

V = k is perfect. Let S be a p-Sylow subgroup of Gk, p7¿char(k). Then

there exists a p-Sylow subgroup T of Gr and a split exact sequence

(5) 0->Zp->T^S-^l

where ¡1 is the restriction to T of the natural epimorphism v : Gr~-*Gk.

Proof. Let hQ% the fixed field of S. Let H be the unique unrami-
fied extension of V with H = h. Set J = H(irlln: » = 1, 2, • • • ) where

it is a prime element of V; we assume these wth roots picked consis-

tently so that (7r1/n)'=7r1/m if n=jm. This is possible since the inverse

limit of finite nonempty sets is nonempty. We then obtain the fol-

lowing Hasse diagram.

V
/

w
/\

W    J
/ \/

k ■ • • F     J'
I 1/
h- • -H

Here F is the maximal unramified extension of V, J' =H(irlln:p\n),

W' = FJ', and W=FJ. We denote the galois group of an algebraic

extension L/K by G(L/K). W is an unramified extension of /'. / is

a purely ramified extension of J' by our consistent choice of the roots

of ir. It follows that W and / are linearly disjoint over J'. Therefore

there exists a natural split exact sequence

(6) 1 -» G(W/W) -+ G(W/J') -* G(W'/J') -* 1.

We have G(W/J)**S by the natural epimorphism. Also G(W/W)

«Zp. Let T be a £-Sylow subgroup of G(f/J'). We claim T is a p-

Sylow subgroup of Gy. It follows from Serre [3, Chap. I, Prop. 2] that

(GvA) = (G(V/H):l)(G(H/V):l).

Since G(H/V)~G(h/k), p\(G(H/V):\). Hence it suffices to show
that T is a £-Sylow subgroup of G(V/H). If this is false there exist

fields K and L such that
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HQKQLQJ',    [L:K]<«>,   p\[L:K.].

We may assume [K : H] < °o by replacing K by the field generated

over H by the coefficients of a defining polynomial for L/K. The

consistency of our choice of the roots of w guarantees that there exists

« such p\n and LQH(irlln). But then [L:X]|n. This contradiction

establishes our claim. Now the restriction epimorphism of G(V/J')

onto G(W/J') induces an epimorphism p:T-*G(W/J') by [3, Chap. I,

Prop. 4(b)]. The kernel of p is TC\G(V/W) = 1 since p7áchar(k) and

W satisfies the hypothesis of Lemma 1. Thus (6) induces (5).

Corollary.

cdp(Gv) = cdp(Gk) + 1.

Proof. If cdp(Gk) < « this follows from the exactness of (5) by a

spectral sequence argument as in [3, Chap. I, Prop. 2(i)]. If cdP(Gk)

= » the equality follows from the splitting of (5).

We continue to denote by k((t)) the field of formal power series

over k and let ki denote the algebraic closure of k(t).

Lemma 4. If k is perfect, then k((t)) ki is algebraically closed.

Proof. k((t)) h is algebraic over W=k((t))(t1>n:n = l, 2, ■ ■ ■).

W is perfect and satisfies the hypothesis of Lemma 3. Thus it suffices

to show that if N/W is a galois subextension of IV/W of degree

n = qm, q = char(k), then there exists a basis «i, • • • , w„£PJi for

N/W. We do this by induction on m. If m^l, there exists a galois

suhextension M/W oí N/W oí degree j = qm~1. Assume coi, ■ ■ ■ ,WjQki

is a basis for M/W. Then there exist Oi, • • • , a3QW such that

N=M(a) where aq—a = a= 2Xi °#>»- Now there exist biQki and

CiQW such that a, = &<+cf and ord(c<aj<) ̂0. Let b= 22<-i b&f and

c= 22<-i c&iQM. Then bQki and ord(c) ^0. Since M is algebraically
closed there exists gQM such that h(g) —0 where h(X) =X"—X—c.

gis a simple root of h~(X) since the derivative of h(X) is — 1. Thus by

Hensel's lemma for M there exists yQM such that h(y)=0. Let

ßQhQW be such that ß"— ß = b. Then we may take a = ß+yQMh.
This completes the proof.

Theorem 3. Let K = k(t). Let p be a prime, p9£char(k). If S is a

p-Sylow subgroup of Gk then there exists a pro-p-subgroup U of Gk and

a split exact sequence

(7) 0-+Zp,-+ c7->S->l.

Proof. We may assume k is perfect. We then apply Theorem 2 to

V=k((t)). Thus there exists a pro-^-subgroup T of Gv and a split



1965]   proof of some conjectures on cohomological dimension 1221

exact sequence as in (5). It only remains to observe that the restric-

tion homomorphism from Gv into Gk is an injection by Lemma 4,

so that T is isomorphic to a closed subgroup U of Gk.

Remark. Theorem 3 implies that 5 is (noncanonically) isomorphic

to a closed subgroup of Gk- Actually, this is true if K/k is an arbitrary

purely transcendental extension. Indeed, if the transcendence degree

t of K/k is finite this follows from Theorem 2 by induction. If r is

infinite, however, the noncanonical nature of the isomorphisms

makes it difficult to carry out a limiting argument. One procedure

which works is to introduce power series fields in a transcendence

basis for K/k. We omit the details since we can establish the Corol-

lary to Theorem 3 without these considerations.

Corollary. If K/k is purely transcendental, then

(8) a + cdp(k) g cdp(K),

where a = the transcendence degree b of K/k if b is finite and a = °o ifb

is an infinite cardinal.

Proof. If ¿> = 1 then (8) holds with a = l by Theorem 3. If b is
finite, then (8) holds by induction. If b is infinite, then for every posi-

tive integer w there exists a subfield L„ of K such that K is a purely

transcendental extension of Ln of transcendence degree w. Thus

»|»+ cdp(GL„) g cdp(GK)

for all «. This completes the proof.
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