ON PARTIALLY ORDERED GROUPS SATISFYING
THE RIESZ INTERPOLATION PROPERTY!

J. ROGER TELLER

I. Preliminaries. Throughout this paper po-group will mean par-
tially ordered abelian group. A po-group G is semi-closed if gEG and
ng =0 for some #>0 implies g=0. G is directed if, whenever g; and
g: are elements of G, there is an element gE€G such that g=g;, and
g2=gs. A subset B of G is lower directed (upper directed) if, whenever
a, bEB, there is an element xEB such that x<a and x<b (x=a and
x2b). Bis adual ideal of G if bEB and a=b impliesa&B. If 4 isa
convex subgroup of G, then a natural order is defined in G/4 by
setting X ©G/A positive if X contains a positive element of G. All
quotient structures will be ordered in this manner. For the po-group
G, Gt={xE€G: x20}.

A po-set S satisfies the Riesz Interpolation Property if, whenever
X1, ***y Xmy Y1, * * *, Yn are elements of S and x;<y; for 1 1= m,
1 <j=mn, then there is an element 2E S such that x; £z=<7y;. Birkhoff
[1, p. 328], lists some conditions that are equivalent to the Inter-
polation Property. The following lemma includes those conditions
given by Birkhofi.

LeEMMA 1.1. If G is a po-group then the following are equivalent.

(1) Riesz Interpolation Property,

(2) (Decomposition Property). If a, b, xEG+ and 0=x=Za-+b, then
there exist elements a’, b’ EG such that x=a'+b' and 0<a’' <a, 0D’
=b.

(3) If I(a) = {xEG|0=sx=a}, then I(a)+I(b)=I(a+D).

@) If Uay, - --,8.)={xEG|x=a;, 1=i<n}, a.EG, then
Ulay, - - -, a,) is lower directed.

5) U@, - - -,a.)+ U@y, -+ -, bn)=Ula;+b;,1=5i5n,15j5m).

(6) If [x,y]={2EG|x <2<y} then for x, v, u, vEG, [x, y]+ [4, v]
= [x+u, y+v].

(7) If ar+ay=b1+bs, where ay, a3, by, b2 EG, then there are elements
x, ¥, 4, vVEG* such that
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g =z, by=2x2+ 4,
a: = 4+, be =1y 4+ 0.

We omit the straightforward proof and note that (1)-(5) are
equivalent if G is not abelian.

DEFINITION. A Riesz group is a semi-closed, po-group that satisfies
the conditions of Lemma 1.1.

The purpose of this paper is to give some of the elementary proper-
ties of Riesz groups. In (5), the extension problem for lattice ordered
groups (l-groups) was considered. In §1I we give necessary and suffi-
cient conditions that a po-extension of one Riesz group by another
be a Riesz group. In the final section some nontrivial examples of
Riesz groups are given.

It is clear from the convexity property that any convex subgroup
of a Riesz group is itself a Riesz group. Hence, it is equally clear that
the cardinal sum, G=A4+4B, is a Riesz group if and only if both 4
and B are Riesz groups.

LeEMMA 1.2. If G is a Riesz group and A is a convex, directed subgroup
of G, then G/A is a Riesz group.

Proor. Let G be a Riesz group and 4 be a convex, directed sub-
group of G. Suppose X =x+4, Y=y+4+A4 and Z=24A are positive
elements of G/A such that 0SZ<X+Y. Then there are elements
a;, 1=1, 2, 3, 4, in 4 such that x+a,, y+a,, and z+a; are positive
elements of G and 0=<z+a3;<x+y+as Since 4 is directed there
exists aEA such that a=0, a1, @2, ¢4« Thus, 0=z+a;<x+y+a.
=(x+a)+(y+a) where 0=x+a,<x+a and 0Sy+a,<y+a. Since
G is a Riesz group, there are elements b, b,EG such that b,4b;
=2+a; and 0=b=x+a, 05b:<y-+a. By setting X'=b+4 and
YV'=b,+4 we have 0ZX'=<X, 0<Y' LY. Moreover, X'4Y’
=b+A4)+(bs+4)=2+a;+A=Z. Thus, G/A satisfies (2) of
Lemma 1.1. :

To show G/A is semi-closed, let X=x+AEG/A and suppose
nX =0 where #>0. Then there is an element a A such that nx+a
20 in G. Let bEA4 such that b=a, 0. Then nb=b=a so n(x+b)
=nx+nb=nx+a=0. Since G is semi-closed this implies x+b=0
and thus X 20 in G/A. This completes the proof.

If G is a semi-closed po-group and D is the d-closure of G, i.e., D is
the minimal divisible group that contains G, then the order of G can
be extended to a semi-closed partial order of D by defining d20in D
if nd 20 in G for some n>0.
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LEMMA 1.3. If G is a Riesz group and D is the d-closure of G, then D
15 a Riesz group.

This follows by a straightforward application of property (2) of
Lemma 1.1.

I1. Extensions of Riesz groups. The notation used in this section
and in the next may be found in (5).

A po-group G is a partially ordered extension (po-extension) of a
po-group A by a po-group A if there is an order preserving homo-
morphism 7 of G onto A with kernel 4 such that 7 induces an order
preserving isomorphism of G/A4 with A. If G is a po-extension of 4
by A whose representative function is r(a) and whose derived factor
function is f(a, B), then we obtain, for each aEAt, the order sets
Qe)={ac4 | () +a =0}, which satisfy

@) Q)=d,

(i) Q(a)+0(®)+f(a, B) SO(a+B),

(iii) Q(f) =At, where 0 is the identity of A.

We denote a po-extension by G=(4, A, f, Q). Note that Q(a) is a
dual ideal of 4.

DEFINITION. A po-extension G=(4, 4, f, Q) is a Riesz extension
if G is a Riesz group and A4 is a directed subgroup of G.

In the proof of the following theorem we need

LeMMA 2.1. If X and Y are dual ideals of a po-group G and Z is a
lower directed subset of G then (XNY)+Z=(X+Z)N\(Y+2Z).

The proof is left to the reader.

THEOREM 2.1. Let A and A be Riesz groups, A directed, and let
G=(4, A, f, Q) be a semi-closed po-extension of A by A. Then G is a
Riesz extension if and only if, for o, BEA*,

(1) Q@)+ +f(a, B) =0(a+B),
(2) Q(e) is lower directed for each a CA*.

ProoF. Suppose G is a Riesz extension of 4 by A and a, BEA*. To
show (1) we need only show Q(a)+Q(B) +f(a, B) 2Q(a+B) since G
is a po-extension. To this end let xEQ(a+8), #EQ(a) and vEQ(B).
Since 4 is directed there are elements a, bEA4 such thata=u, a=x,
b=v, and b= (a—x) —f(a, 8). Thus, e €Q(a) and bEQ(B). Moreover,
xZa+b+f(e, B) so (0, 8) = (x, a+P) = [a+b+f(a, B), a+B]=(a, @)
<+ (b, B). Since G is a Riesz extension there are elements (a’, ') and
(&', B') in G such that (x, a+B) = (a’, &) +(b’, 8’) and (0, 6) < (a’, ')
=(a, @), (0, 0) = (¥', ') = (b, B). Thus, <o’ =, §<p' <P and since
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o +p' =a+Bitfollows that o’ =aand §’ =B. Consequently, a’ €Q(x),
b'€Q(B) and x=a'+b"+f(a, B) €Q() +Q(B) +f(e, B) and (1) holds.

To show (2) let €A+ and a, bEQ(a). Let x €A such that x =0, and
x2Zb—a. Then (0, 0) = (g, @) = (x+a, a)=(b, @)+ (x—b+a, 6) so
there are elements (a’, &’) and (¥’, 8’) in G such that (g, a) =(da’, o)
+ (', #') and (0, 8) =(¢', &) = (b, @), (0, 6) <(¥', B') < (x—b+a, 0).
Thus, 8'=0 and &’ =a, ¢’ €Q(a) and (b, @) 2(a’, ). Therefore, b =a’
and a = a' since (g, &) = (a’, @). Hence, Q() is lower directed.

Now suppose G=(4, 4, f, Q) is a semi-closed po-extension that
satisfies (1) and (2). To show G is a Riesz extension we will show G
satisfies the Decomposition Property. To this end let (g, ), (b, B)
and (c, ¥) be positive elements of G such that (0, 8) <(c, v) <(a, @)
+(b, B). Then 0=y =a+pB where a, BEA*, so there are elements
o, B'EAt such that y=ao'+p' and 0<a'Sa, 0=5F'<B. Thus,
c€Q(' +8)=0() +0B) + f(e/,8) so c=a+f(«,f’) where
a€Q(@)+Q@B). Also, a+b+f(e,f)—c—flv,—v)+fla+8,—7)
€Q(a+B—7) and it follows that a+b+f(e,B) —cEQ[(a—a’)
+B-8)]+fl(@—a)+(B—B) 0/ +8']. Let o/’ =a—a' and B"=p
_Bi. Then a +b -I-f(a" +al’ BII +BI) —CEQ(a" +ﬂ”) +f(a"+B",
o' +6) =Q(")+QB") +f(", B")+f(e’+B", o/ +B'). Thus, a+b
+1(e" + 8" + ) — & — fol, B) = f(e", ") — fla" +B",of +')
=a+b—a—f(e", o) ={(8", ) EQe") +Q("). Let a=a—f(a’", /)
and by=b—f(8", §’). Then we have a1+b—c:EQ(a’’) +Q(8").

Now ai+f(a, o) =€Q(a) = Q") +Q(a) +f(a",a’) and
€0 ") +Q(B")+c1—b1 so, by Lemma 2.1,

a1 € Q) + {Q@) N [QEB") + & — bi)}.

Thus, a;=ad+x where €Q(/’) and xEQ(a")N[QB") +c1—b1] so it
follows that 5EQE")+a—x=QB")+Q@0)+ca—=x. Also, b+
f@B", B")=b€QB) =QB")+Q(B") +f(B", ') so by Lemma 2.1,

b € Q@) + {0 N [0O) + e1 — =]}

Hence, by=>5+y where 5&Q(8") and yEQ(B')N[Q(6) +c1—x]. Con-
sequently, y=p-+c—x where 0SpEA,s0c1=y+x—pEQ®B’) +x—p
=Q(B)+Q(0) +x—p. Since c:EQ(a’) +Q(B') it follows from Lemma
2.1 that

a € Q) + {0@) N [0®) + = — p]}

which implies c;EQ(8")+w where wEQ(a/)N[Q(0) +x—p]. Thus,
w=m-+x—p where m =0 and so w=x—p.
We have w, x€Q(a’) so by (2) there is an element sEQ(e) such
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that 2<x and z=<w. Also, x—p=<w and clearly, x—p=<x. By the
Riesz Interpolation Property there is an element a’€A4 such that
x—p=ad,z2=5d’,a’Swand a =x.

Now z=a’ implies ¢’ E€Q(a’) and ¢’ <x impliesa—a’'Za—x=a+d
—a1=d+f(o, ) EQ(") +f(”, ). Since (a, @) —(¢', &) =[a—a’
—fl, —a)+fla, —a'), a—a']=[a—a'—f(a", &), '] 2(0, 0) it
follows that (0, 8) < (a’, &’) =(a, ). Since w=a’ it follows, in a sim-
ilar manner, that (0, ) <(a’, ') = (¢, v) and hence, (¢, v) —(a’, )
(0, ).

Finally, a’Zx—p so bi—(a—a’)Zbi—[a—(x—p)]=bEQ(B")
which implies b—f(8", B') —ca—a’ €Q(B"'). Thus,

®,8) = [, v) — (@, )]
=8 — [c—d — fo, = ) + f(y, —a’), ¥ — @]
={b—c+d +1, —a) = fly,—) — fly — o, = (v — )]
+ 1@, —y + o), 8 — v + o'}
=[b—c+d +f(,8) — [, —B) + 16, =B, 8"]
=[b—a+d -1, 6,612 0.

Hence, (b, B) 2 [(c, 1) — (@', &)].

In conclusion we have, (¢, v) =(a’, &)+ [(c, v) —(a’, o’)] where
(0,6) = (a’, &) =(a, @) and (0, 60) = [(c, v) —(¢’, a') | 2 (b, B) as desired.
The proof is complete.

The author wishes to thank Professor A. H. Clifford for his help
in simplifying the above proof.

I11. Examples. It is clear, by (4) of Lemma 1.1 that every I-group
is a Riesz group. Other examples of Riesz groups can easily be con-
structed from I-groups in the following way.

Let 4 and A be I-groups and G=A4 ®A. Define (a, a) positive in G
if >0 or a=0 and ¢=0. Clearly G is semi-closed and G is a po-
extension of 4 by A where Q(a) =4 if >0 and Q(f) =A4+. Thus, by
the previous theorem, G is a Riesz group.

It is well known that G is an l-group if and only if A is an ordered
group.

The remaining examples are all Hahn-type po-groups which are
defined as follows. Let T' be a po-set and, for each y&T', let R, be a
nontrivial po-group. Let V=V(T, R,) be the following subset of the
large direct sum of the R,. An elementv=(- - -, v(y), - - - )EVif
and only if S(v)= {'yEI‘Iv('y);éO} contains no infinite ascending
sequences. This is the same as saying every nonempty subset of S(v)
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contains at least one maximal element. If v&€V then v(y), yET, is a
maximal component of v if v(y) =0 and v(e) =0 for all «>v. A non-
zero element v is positive if each maximal component of v is positive.
In [3, p. 145] it is shown that V(T', R,) is a po-group. If @, BET such
that a2 B and B a then we write aI !B. If B is a subset of a po-
group G then DI[B]= {gEG|gzb, for some bEB}.

THEOREM 3.1. If T is a po-set with a finite number of maximal chains
and for each yET, R, is an o-group, then V=V(T', R,) is a Riesz
group.

Proor. Suppose I' has # < © maximal chains and, for each y&ET,
R, is an o-group. The proof is by induction on .

If n=1, then T is a chain and V is an o-group by [3, p. 147]. So
suppose the theorem is true for all po-sets with fewer than # maximal
chains. Let C be a maximal chain of T, C'= {'ye C | there exist
81, 8T, 8|8 and ¥>8, ¥> 8}, I"=C\C’ and T =T\I". We first
show I'" has fewer than # maximal chains.

Increasing

_‘_-_..'..

| R .-

If I'=¢, then C=C', so for each y&EC there exist elements ¢,
geET, al | B, such that a <y, 8 <7. Hence, either there exist elements
81, 8,ET, 8y| | 8z, such that 8, <y and 8, <7 for all yEC, which implies
C is not maximal, or T' has an infinite number of maximal chains.
Both cases lead to contradictions so I &f. Moreover, since each
YEC exceeds at least two noncomparable elements of I', and T has
only a finite number of maximal chains we conclude C’ is not a
maximal chain of I'”’.
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Now suppose D;, 1 <i<m are the distinct maximal chains of I'"".
Clearly, no two distinct maximal chains of I/ are contained in the
same maximal chain of I'. Hence, there exist C;, 1 <1=<m, maximal
chains of T such that D;CC;, 1=4<m, and C;C;, 1#j. Also, since
C' is not maximal in I/, there is, for each 7, an element d;ED; such
that d;&¢EC’. But d;€I"'=T\I" so d;&I' and therefore d;€C,
1<i=m. Consequently, C;#C, 1=41<m, and C, G, - -+, Cn are
m-+1 distinct maximal chains of I'. Thus, m+1=<#n so m<n and T'"’
has fewer than # maximal chains.

Now let A=V({’, R,) and A=V(I'"’, R,). Then 4 is an o-group
and by induction A is a Riesz group. Moreover, V(T', R,) =4 @A.

For each v&At, let I'(v) = {‘yEI" |'y<8 where 9(8) is a maximal
component of v}. Let H(»)=0 if T'(v) = and H(v) = {aEAIS(a)
CI'(v)} if T(v)# . Then H(v) is a convex o-subgroup of 4. If
u, yEA*, then either I'(u) CI'(v) or T'(v) CT'(u) since IV is totally
ordered. Suppose %, v&At+ and T'(x) CI'(v). Then H(u) CH(v) and
since # and v are positive, I'(#+v) =T'(v) which implies H(u+v)
= H(v). Therefore, H(u)+H(v) = H(v) = H(u+v).

For v&A*, let Q(v) =DI[H(v)]. Then Q(v) is lower directed since
H(v) is an o-group and Q(x) + Q(v) = DI[H(x)] + DI[H(v)]
=DI[H(u)+H()]|=DI[H(u+v)] =Q(u+v) for u, v€A+. Thus,
G=(4, A, f=0, Q) is a Riesz extension.

Finally let m: G-V, R,) be defined by w(a, v) =a+v. Clearly,
« is an isomorphism of G onto V(I', R,). We show both 7 and =™!
preserve order.

If (a, v) €G*, then v=60 and a €EQ(v). If the maximal component of
a is positive then, a+v is positive in V(T', R,), since v=0 in A. If the
maximal component a(8) of a is negative then 02a 2hEH (v) and
by convexity a €H(v). Thus, there exists yET such that v(y) is a
maximal component of v and v > 8. Since v is positive in A, v(y) >0,
so a+v is positive in V(T, R,).

On the other hand, if 0= V(T, R,), then i=a+v where a €4,
9EA. Since =0 and no yEI exceeds any §ETI" it follows that
v=0. As before, if the maximal component a(8) of a is positive then
a =0 and if a(d) is negative then, since a+v=0 in V(T', R,), <y
where v(y) is a maximal component of v. Hence, aEQ(v) and (a, v)
€Gt. Thus, 7 is an order preserving isomorphism and V(T', R,) is a
Riesz group. This completes the proof.

The following construction shows if R, is trivially ordered for some
¥ ET, then additional conditions must be placed on I so that V(T', R,)
will be a Riesz group.
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LetI'= {a, B, 'y} where 8>a, y>a, and Bl I'y. Let Rg=R, be the
naturally ordered reals and R, be the real numbers with the trivial
order. Then V(T', R,) is not a Riesz group. Now V=R,®Rs® R, so
vEV can be represented as v= [v(c), v(8), v(y)]. Clearly, (0, 0, 0)
<(1, 0, 1)<(0, 0, 1)4(0, 1, 0). If (1, 0, 1)=%+7 where (0, 0, 0)
=4=(0,0, 1) and (0, 0, 0) =5=(0, 1, 0) then %(8) =#(8) =0, #(y) =0
and #(y) =1. Consequently, if =0 then #(a) =0 and thus #i(a) =1.
Hence, $=(0, 0, 0) and #=(1, 0, 1). However, (1, 0, 1) £(0, 0, 1), so
V is not a Riesz group.

In [3, p. 145] it is shown that if T' is a root system, (for each
vET, {8€T|6=7} is totally ordered), and for yET, R, is a sub-
group of the naturally ordered reals, then V(I', R,) is an l-group.
The next example shows V(T', R,) is a Riesz group if I is a root sys-
tem and R, is a divisible subgroup of the real numbers with either
the natural or the trivial order.

We first note that if G is a divisible directed Riesz group, then the
Decomposition Property implies the following. If %, u, ¥€G and
x<u-v then there are elements #, 3&G such that x=#+4% and
#<u, 9 <v. To show this let bEG such that b <0, b<u, b<v, b<x and
apply the Decomposition Property to 0 <x—b—b <(u—b)+ (v—>).
It is also true that if ¥>0 in the above then # may be chosen so that
0<9<y.

THEOREM 3.2." If T 4s a root system and, for each yET, R, is a
divisible subgroup of the real numbers with either the natural or the
trivial order, then V=V (T, R,) is a Riesz group.

Proor. Suppose x, #, vEV+ and 0<x<u-+v. We define % and &
in Vsothat x=4+9and 0<4#<u, 0<9<v. Let w=u+v—x and I
be that subset of I' such that vy €I if and only if x(y), #(y), v(y) and
w(y) are maximal components of x, #, v and w respectively. If y&I",
then we have 0<x(y) <u(y)+v(y) where x(y), #(y) and v(y) are
positive elements of the o-group R,. Thus, by the Decomposition
Property, there are elements #%(y) and #(y) in R, such that x(y)
=4(y) +3(y) and 0=4a(y) Su(y), 0=i(y) Sv(v).

Let I'” be that subset of T such that §&TI" if and only if w(d) is a
maximal component of w and either §SA<y=8 or §<A=y=4,
where x(y), #(8) and v(\) are maximal components of x, % and v
respectively. For 6 €T, let #(8) and %(8) be defined according to the
remarks preceding this theorem, where 4(8) or #(8) is chosen positive
when necessary.

Now let C be a maximal chain of T'. If the projection of x on C is
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zero let 4(a) =7(a) =0 for all aEC. If the projection of x on C is not
zero and x(y), yEC is the maximal component of x on C, then x(y)
>0. Since x<u+v, it follows that the projection on C of % or v is
not zero and, if #(8), BEC, is the maximal component of %, and
9(\), AEC, is the maximal component of v, then either =% or
A=7. In all that follows x(y), #(8), v(A) and w(é), v, B, N, 8EC, will
denote the maximal components of x, #, v and w respectively on C.

If yECNTY let 4(a) =9(a) =x(a) /2 for all a EC, ay. If s€CNT’
let %(a) =u(a) and () =v(a) for all > and #(a) =9(c) =x(x) /2 for
all <4, acC.

If u(a) +v(a) =x(a) for all a€C, let 4(a) =u(a), #(a) =v(a) for all
aEC. If B>v and N>y, let 4(a) =9(a) =x(a)/2 for all aEC.

If the projection of v on C is zero, or B> and A=v, or f=v,
A<y and A<=, let #(a) =x(a) and 3(a) =0 for all e EC.

Now clearly, on the chain C, #+9=x and 0=<4=<u, 0S9=v. We
perform this construction, or its dual, for each maximal chain of T'.
A lengthy but straightforward argument shows that # and % so
constructed are well defined elements of V such that 0<#=<u and
097

Thus, V=V, R,) satisfies the Decomposition Property and V
is a Riesz group. This completes the proof. A

The following remains an open question: if T' is an arbitrary po-set
and for each yET, R, is the real numbers with the natural order, is
V(T', R,) a Riesz group?
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