
ON PARTIALLY ORDERED GROUPS SATISFYING
THE RIESZ INTERPOLATION PROPERTY1

J. ROGER TELLER

I. Preliminaries. Throughout this paper po-group will mean par-

tially ordered abelian group. A po-group G is semi-closed if gQG and

ngèzO for some ra>0 implies g2:0. G is directed if, whenever gi and

g2 are elements of G, there is an element gQG such that g^gi and

gèg2- A subset P of G is lower directed (upper directed) ii, whenever

a, bQB, there is an element xQB such that x^a and x^b (x^a and

x^b). B is a dual ideal of G if &£P and ajg& implies aQB. If .4 is a

convex subgroup of G, then a natural order is defined in G/A by

setting XQG/A positive if X contains a positive element of G. All

quotient structures will be ordered in this manner. For the po-group

G, G+={xQG:x>0}.
A po-set 5 satisfies the Riesz Interpolation Property if, whenever

*i, • * * i *m, yi, • • • , yn are elements of 5 and x^y, for 1 ^i^m,

1 újú.n, then there is an element zQS such that Xj^záyy. Birkhoff

[l, p. 328], lists some conditions that are equivalent to the Inter-

polation Property. The following lemma includes those conditions

given by Birkhoff.

Lemma 1.1. If G is a po-group then the following are equivalent.

(1) Riesz Interpolation Property,

(2) (Decomposition Property). If a, b, xQG+ and 0^x^a+b, then

there exist elements a', b'QG such that x = a'+b' and O^a'^a, O^b'

(3) If I(a)={xQG\0^x^a}, then 1(a) + 1(b) =I(a+b).

(A) If U(au ■ ■ • ,an)= {xQG\x^ai, 1=4^«}, atQG, then
U(ai, • • • , o„) is lower directed.

(5) U(au • • •,an) + U(bi, •••,&„)- 1/(0,4-6,, 1 á*á», 1ájá»).
(6) If [x, y]= [zQG\x^z^y] then for x, y, u, vQG, [x, y]+ [u, v]

= [x+u, y+v].

(7) 2/ai+a2 = c>i-f-è2, where oi, o2, b\, b2QG+, then there are elements

x, y, u, vQG+ such that
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ai = x + y,       bi = x + u,

at = « + v,       bi = y + v.

We omit the straightforward proof and note that (l)-(5) are

equivalent if G is not abelian.

Definition. A Riesz group is a semi-closed, po-group that satisfies

the conditions of Lemma 1.1.

The purpose of this paper is to give some of the elementary proper-

ties of Riesz groups. In (5), the extension problem for lattice ordered

groups (/-groups) was considered. In §11 we give necessary and suffi-

cient conditions that a po-extension of one Riesz group by another

be a Riesz group. In the final section some nontrivial examples of

Riesz groups are given.

It is clear from the convexity property that any convex subgroup

of a Riesz group is itself a Riesz group. Hence, it is equally clear that

the cardinal sum, G = A+B, is a Riesz group if and only if both A

and B are Riesz groups.

Lemma 1.2. // G is a Riesz group and A is a convex, directed subgroup

of G, then G/A is a Riesz group.

Proof. Let G be a Riesz group and A be a convex, directed sub-

group of G. Suppose X = x+A, F=y+^4 and Z = z+A are positive

elements of G/A such that O^Z^X+F. Then there are elements

a,-, t = l, 2, 3, 4, in A such that x+ai, y+a2, and z+a3 are positive

elements of G and 0^z+a3i¡x+y+a*. Since A is directed there

exists aEA such that a^O, Oi, a2, a^ Thus, 0^z+a3^x+y+a^

ú(x+a) + (y+a) where O^x+ai^x+a and 0^y+a2^y+a. Since

G is a Riesz group, there are elements bi, b2EG such that bi+b2

= z+a3 and O^bi^x+a, 0^b2^y+a. By setting X'=bi+A and

Y' = b2+A we have O^X'gX, O^F'^F. Moreover, X'+Y'

= (h+A) + (b2+A)=z+a3+A=Z. Thus, G/A satisfies (2) of
Lemma 1.1.

To show G/A is semi-closed, let X = x+AEG/A and suppose

«X^O where w>0. Then there is an element aEA such that nx+a

^0 in G. Let bEA such that b^a, 0. Then nb^b^a so n(x+b)

= nx+nb^nx+a^0. Since G is semi-closed this implies x+b^0

and thus XjäO in G/A. This completes the proof.

If G is a semi-closed po-group and D is the ¿-closure of G, i.e., D is

the minimal divisible group that contains G, then the order of G can

be extended to a semi-closed partial order of D by defining á^O in D

if ndlzO in G for some «>0.
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Lemma 1.3. If Gis a Riesz group and D is the d-closure of G, then D

is a Riesz group.

This follows by a straightforward application of property (2) of

Lemma 1.1.

II. Extensions of Riesz groups. The notation used in this section

and in the next may be found in (5).

A po-group G is a partially ordered extension (po-extension) of a

po-group A by a po-group A if there is an order preserving homo-

morphism tr of G onto A with kernel A such that ir induces an order

preserving isomorphism of G/A with A. If G is a po-extension of A

by A whose representative function is r(a) and whose derived factor

function is f(a, ß), then we obtain, for each a£A+, the order sets

Q(a) = {a EA | r(ct) +a ^ 0}, which satisfy

(i) Q(*)*0,
(ii) Q(a)+Q(ß)+f(a,ß)QQ(a+ß),
(iii) Q(B) =A+, where 6 is the identity of A.

We denote a po-extension by G = (A, A,/, Q). Note that Q(a) is a

dual ideal of A.
Definition. A po-extension G = (A, A, /, Q) is a Riesz extension

if G is a Riesz group and A is a directed subgroup of G.

In the proof of the following theorem we need

Lemma 2.1. If X and Y are dual ideals of a po-group G and Z is a

lower directed subset of G then (IH F) +Z = (X+Z)C\(Y+Z).

The proof is left to the reader.

Theorem 2.1. Let A and A be Riesz groups, A directed, and let

G = (A, A, /, Q) be a semi-closed po-extension of A by A. Then G is a

Riesz extension if and only if, for a, /3£A+,

(1) Q(a) +Q(ß) +f(a, ß) = Q(a+ß),
(2) Q(a) is lower directed for each a£A+.

Proof. Suppose G is a Riesz extension of A by A and a, /3£A+. To

show (1) we need only show Q(a)+Q(ß)+f(a, ß)^DQ(a+ß) since G

is a po-extension. To this end let xEQ(ct+ß), uEQ(a) and vEQ(ß).

Since A is directed there are elements a, bEA such that a^u, a^x,

b^v, and b^(a-x)-f(a, ß). Thus, aEQ(*) and bEQ(ß). Moreover,

xúa+b+f(a, ß) so (0,B)^(x, a+ß)^[a+b+f(ct, ß),a+ß] = (a, a)

+ (b, ß). Since G is a Riesz extension there are elements (a', a') and

(&', ß') in G such that (x, a+ß) = (a', a') + (b', ß') and (0, 6) g (a', a')

^(a, a), (0, 6)ú(b', ß')^(b, ß). Thus, öga'^a, B^ß'^ß and since
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a'+0'=a+/? it follows that a'= a and ß' =ß. Consequently, a'QQ(a),

b'QQ(ß) and x=a'+b'+f(a, ß)QQ(a)+Q(ß)+f(a, ß) and (1) holds.
To show (2) let aQA+ and a, b QQ(a). Let xQA such that x ̂  0, and

x^b-a. Then (0, 8)£(a, a)^(x+a, a) = (b, a) + (x-b+a, 0) so

there are elements (a', a') and (b', ß') in G such that (a, a) = (a', a')

+ (b', ß') and (0, d)^(a', a')Z(b, a), (0, 0)£(V, ß')Z(x-b+a, 6).

Thus, ß'=6 and a'=a, a'QQ(a) and (&, a) ^(c', a). Therefore, b^a'

and a^a' since (a, a) è(a', a). Hence, Q(a) is lower directed.

Now suppose G — (A, A, /, Q) is a semi-closed po-extension that

satisfies (1) and (2). To show G is a Riesz extension we will show G

satisfies the Decomposition Property. To this end let (a, a), (b, ß)

and (c, 7) be positive elements of G such that (0, 6) ^ (c, 7) á (a, a)

+(b, ß). Then Quyua+ß where a, ßQA+, so there are elements

a7, ß'QA+ such that 7=a'+^' and öga'ga, ö^ß'g/3. Thus,

ce<2(<*'+0') = <?(<*') + 0(0') +/(«', J3') so c = Ci+/(«',/3') where
CiQQ(ct')+Q(ß'). Also, a+&+/(a,J8)-c-/(7,-7)+/(a+ß,-7)
G<2(a+/3-7) and it follows that a+b+f(a,ß)-cQQ[(a-a')
+ (ß-ß')]+f[(a-a') + (ß-ß'),a'+ß']. Let a"=a-a' and /3"=0

-ß'. Then a + 6+/(a"+a',j3"-r-ß')-cG(3(a"+/3")+/(a"+^",

a'+j3')=<2(<*")+W') +/(<*", |8")+/(a"+|8". ot'+ß'). Thus, a+ö
+/(«" + a', ô" + â') - ci - f(a', ß') - f(a", ß") - f(a" +ß", a' +ß')
=a+b-ci-f(a", a') -f(ß", ß')QQ(a")+Q(ß"). Let ai = a-f(a", a')
and bi = b-f(ß", ß'). Then we have a1+b1-ciQQ(a")+Q(ß").

Now ai+f(a",a')=aQQ(a) = Q(a")+Q(a')+f(a",a!) and ax

G<2(a")+ö(jS")+Ci-oi so, by Lemma 2.1,

ai Q Q(a") + {Q(a') H [Q(ß") + cl-b1]}.

Thus, ai = ä+x where âQQ(a") and ¡cGÖ(a')irM(?(j3")+Ci-&i] so it
follows that biQQ(ß")+Ci-x = Q(ß")+Q(6)+c1-x. Also, 61+

f(ß", ß') =bQQ(ß)=Q(ß")+Q(ß')+f(ß", ß') so by Lemma 2.1,

¿1 Q Q(ß") + {Q(ß') H [Q(6) + a - x]}.

Hence, bi = h+y where BQQ(ß") and yGöOSO^iöW+Ci-*]. Con-
sequently, y=/>+ci—* where 0 èpQA, so Ci=y+:c—/»G(?(/3') +# — *'»

= Q(ß')+Q(0)+x-p. Since CiG<2(ct')+<203') it follows from Lemma
2.1 that

aeQ(ß') + {QW)r\[Q(6) + x-p])

which implies CiQQ(ß')+w where wG<2(«')^[Q(ö) +x-p]. Thus,
a»=ire+x—/> where m 2:0 and so w^x—p.

We have w, xQQ(a') so by (2) there is an element zQQ(a') such
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that zúx and zúw. Also, x—púw and clearly, x—púx. By the

Riesz Interpolation Property there is an element a'EA such that

x—púa', z^a', a' úw and a'Ux.

Now zúa' implies a'EQ(a') and a'ux implies a—a'^a—x=a+â

-ai = â+f(a", <x')EQ(ct")+f(u", a'). Since (a, a)-(a', a') = [a-a'

-/(<*', -a')+f(a, -a'), a-a']=[a-a'-f(a", at'), cc"]^(0, 8) it

follows that (0, 8) ú(a', a')ú(a, a). Since w^a' it follows, in a sim-

ilar manner, that (0, 8)ú(a', a')ú(c, y) and hence, (c, y) — (a', a!)

^(0,8).
Finally, a'^x-p so bi-(ci-a')^bx- [ci-(x-p)] = hEQ(ß")

which implies b-f(ß", ß')-Ci-a'EQ(ß")- Thus,

(b,ß)-[(c,y)-(a',a')]

= (b, ß) - [c - a' - /(«', - a') + f(y, -a'), y - a']

= {b-c+a' + /(«', -a') -f(y, -a') -/[y - a', -(y- «')]

+ f(ß,-y + a'),ß-y + a'}

= [b - c + a' +/(«', ß') -f(ß', -ß') +f(ß, -ß'), ß"]

= [b-a + a'-f(ß",ß'),ß"]^(0,6).

Hence, (b,ß)^[(c, y)-(a',a')].

In conclusion we have, (c, 7) = (a', a') + [(c, y) — (a', a') ] where

(0,8) Ú (a', a') Ú (a, a) and (0,8) Ú [(c, y) - (a', a') ] Ú (b, ß) as desired.

The proof is complete.

The author wishes to thank Professor A. H. Clifford for his help

in simplifying the above proof.

III. Examples. It is clear, by (4) of Lemma 1.1 that every /-group

is a Riesz group. Other examples of Riesz groups can easily be con-

structed from /-groups in the following way.

Let A and A be /-groups and G = A ©A. Define (a, a) positive in G

if a>8 or a=8 and a^0. Clearly G is semi-closed and G is a po-

extension of A by A where Q(a) =A if a>8 and Q(8) =A+. Thus, by

the previous theorem, G is a Riesz group.

It is well known that G is an /-group if and only if A is an ordered

group.

The remaining examples are all Hahn-type po-groups which are

defined as follows. Let T be a po-set and, for each yET, let Ry be a

nontrivial po-group. Let F= F(r, Ry) he the following subset of the

large direct sum of the Ry. An element v = ( • • ■ , v(y), ■ • ■ )£7 if

and only if S(v) = {yET\v(y)¿¿0} contains no infinite ascending

sequences. This is the same as saying every nonempty subset of S(v)
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contains at least one maximal element. If vQV then v(y), 7Gr, is a

maximal component oí v if 11(7)^0 and v(a) =0 for all a>y. A non-

zero element v is positive if each maximal component of v is positive.

In [3, p. 145] it is shown that F(r, Pr) is a po-group. If a, ßQT such

that «a/3 and ß^ot then we write a\ \ß. If P is a subset of a po-

group G then DI[B]= [gQG\g^b, for some bQB}.

Theorem 3.1. If Y isa po-set with a finite number of maximal chains

and for each 7Gr, Ry is an o-group, then F= F(r, P7) is a Riesz

group.

Proof. Suppose Y has n< oo maximal chains and, for each 7Gr,

Ry is an o-group. The proof is by induction on ».

If « = 1, then r is a chain and V is an o-group by [3, p. 147]. So

suppose the theorem is true for all po-sets with fewer than n maximal

chains. Let C be a maximal chain of Y, C'= {yGCl there exist

Si, SiQY, 5i| |Ô2 and y>8i,y>Si},Y' = C\C and r"=r\T'. We first
show T" has fewer than n maximal chains.

Î
Increasing

If r' = 0, then C=C, so for each 7GC there exist elements a,

ßQY, a\ \ß, such that a<y, ß<y. Hence, either there exist elements

Si, S2Gr, Si| I 52, such that 5i<7 and S2<7 for all 7GC, which implies
C is not maximal, or T has an infinite number of maximal chains.

Both cases lead to contradictions so Y'^0. Moreover, since each

7GG' exceeds at least two noncomparable elements of Y, and Y has

only a finite number of maximal chains we conclude C is not a

maximal chain of Y".
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Now suppose Di, lúiUm are the distinct maximal chains of T".

Clearly, no two distinct maximal chains of T" are contained in the

same maximal chain of T. Hence, there exist d, íúiUm, maximal

chains of V such that DiQd, lúiúm, and d^Cj, ij^j. Also, since

C is not maximal in T", there is, for each i, an element diEDt such

that di<£C. But d,er" = r\r' so di<£T' and therefore d,£C,
lúi Um. Consequently, d^C, lúiUm, and C, G, • • • , Cm are

m + l distinct maximal chains of T. Thus, m + lún so m<n and T"

has fewer than « maximal chains.

Now let A = F(r', Ry) and A= F(r", Ry). Then A is an o-group

and by induction A is a Riesz group. Moreover, F(r, Ry) —A ©A.

For each i>£A+, let T(v) = {7£r'|7<5 where v(8) is a maximal

component of v}. Let H(v)=0 if T(v)=0 and #(?>) = {oG^4| S(a)

QT(v)} if T(v)t¿0. Then ii(i/) is a convex o-subgroup of A. If

m, »GA+, then either r(«)çr(s) or T(v)QT(u) since T' is totally

ordered. Suppose u, ü£A+ and r(ii)cr(»). Then H(u)QH(v) and

since u and t> are positive, T(u+v)=T(v) which implies H(u+v)

= H(v). Therefore, H(u)+H(v) =H(v) =H(u+v).

For i»GA+, let Q(v) =Dl[H(v)]. Then Q(v) is lower directed since

H(v) is an o-group and Q(u) + Q(v) = Dl[H(u)] + Dl[H(v)]

= DI[H(u)+H(v)]=DI[H(u+v)] = Q(u+v) for m, «GA+. Thus,

G = (A, A,f=0, Q) is a Riesz extension.
Finally let 7r: G—>F(r, Ry) be defined by ir(a, v)=a+v. Clearly,

ir is an isomorphism of G onto F(r, Ry). We show both w and 7T_1

preserve order.

If (a, v) EG+, then v^d and a£Q(z>). If the maximal component of

a is positive then, a+v is positive in F(r, Ry), since i/^O in A. If the

maximal component a(S) oí a is negative then 0^a^hEH(v) and

by convexity aEH(v). Thus, there exists 7£r such that v(y) is a

maximal component of v and 7>5. Since v is positive in A, f(7) >0,

so a+v is positive in F(r, Ry).

On the other hand, if OúvEV(T, Ry), then v = a+v where aEA,

i;£A. Since ä=gO and no yET' exceeds any SET" it follows that

v ̂  0. As before, if the maximal component a(b) oí a is positive then

a^O and if c(8) is negative then, since a+v^,0 in F(r, Ry), 8<y

where v(y) is a maximal component of v. Hence, aEQ(v) and (a, v)

EG+. Thus, ir is an order preserving isomorphism and F(r, Ry) is a

Riesz group. This completes the proof.

The following construction shows if Ry is trivially ordered for some

7£r, then additional conditions must be placed on V so that F(r, Ry)

will be a Riesz group.
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Let r= {a, ß, y\ where ß>a, y>a, and ß\ I7. Let Rß = Ry be the
naturally ordered reals and Ra be the real numbers with the trivial

order. Then F(r, Ry) is not a Riesz group. Now V = Ra®Rß®Ry so

vQV can be represented as v= [v(a), v(ß), v(y)]. Clearly, (0, 0, 0)

<(1, 0, 1)<(0, 0, l) + (0, 1, 0). If (1, 0, l) = w+i where (0, 0, 0)
á«^(0, 0, l)and (0, 0, 0) á»á(0, 1, 0) then ü(ß) =v(ß)=0, v(y)=0
and «(7) = 1. Consequently, if ö^O then v(a)=0 and thus w(a) = l.

Hence, 5 = (0, 0, 0) and « = (1, 0, 1). However, (1, 0, 1) ¿(0, 0, 1), so

V is not a Riesz group.

In [3, p. 145] it is shown that if Y is a root system, (for each

7Gr, {SGr|5^7} is totally ordered), and for 7Gr, Ry is a sub-
group of the naturally ordered reals, then F(r, Ry) is an /-group.

The next example shows F(r, P7) is a Riesz group if Y is a root sys-

tem and Ry is a divisible subgroup of the real numbers with either

the natural or the trivial order.

We first note that if G is a divisible directed Riesz group, then the

Decomposition Property implies the following. If x, u, vQG and

x<u+v then there are elements «, vQG such that x = ü+v and

ü<u, v<v. To show this let bQG such that ¿»<0, b<u,b<v, b<xand

apply the Decomposition Property to 0<x—b—b<(u — b) + (v—b).

It is also true that if o>0 in the above then v may be chosen so that

0<v<v.

Theorem 3.2. If Y is a root system and, for each yGr, Ry tí a

divisible subgroup of the real numbers with either the natural or the

trivial order, then F= F(r, Ry) is a Riesz group.

Proof. Suppose x, u, vQV+ and 0<x<u+v. We define « and v

in V so that x = ü+v and O^w^m, O^ü^í». Let w = u+v—x and Y'

be that subset of Y such that 7Gr' if and only if #(7), «(7), «(7) and

w(y) are maximal components of x, u, v and w respectively. If 7Gr',

then we have 0<jc(7) <4î(7)+î>(7) where #(7), u(y) and v(y) are

positive elements of the o-group Ry. Thus, by the Decomposition

Property, there are elements «(7) and »(7) in Ry such that x(y)

= ü(y)+v(y) and 0^0(7) ûu(y), 0^(7) ¿>v(y).

Let T" be that subset of Y such that SGr" if and only if w(d) is a
maximal component of w and either 8^\<y=ß or 5<X=7=j8,

where #(7), u(ß) and o(X) are maximal components of x, u and v

respectively. For SGr", let w(S) and p(5) be defined according to the

remarks preceding this theorem, where ü(o) or ö(S) is chosen positive

when necessary.

Now let C be a maximal chain of Y. If the projection of x on C is
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zero let ü(a) = v(a) =0 for all aQC. If the projection of x on C is not

zero and #(7), 7GC is the maximal component of x on C, then x(y)

>0. Since x<u+v, it follows that the projection on C of u or v is

not zero and, if u(ß), ßQC, is the maximal component of u, and

v(\), \QC, is the maximal component of v, then either ß^y or

X^7. In all that follows x(y), u(ß), v(X) and w(5), 7, ß, X, 5GG, will

denote the maximal components of x, u, v and w respectively on C.

If 7 G Cf\T let ü(a) = v(a) = x(a)/2 for all aQC, a^y. If 8QCi\Y"
let û(a) =u(a) and v(a) =v(a) for all a>5 and «(a) =ü(a) =x(a)/2 for

all a<8, «GC.
If u(a)+v(a) = x(a) for all aQC, let «(a) = «(«), »(a) =v(a) for all

«GC. If ß>y and X>7, let w(a) = v(a) =x(a)/2 lor all «GC.

If the projection of v on C is zero, or ß>y and X^7, or 0 = 7,

X<7 and X<S^7, let ü(a) =x(a) and v(a) =0 for all aQC.

Now clearly, on the chain C, ü+v = x and 0|«^w, O^v^v. We

perform this construction, or its dual, for each maximal chain of Y.

A lengthy but straightforward argument shows that a and v so

constructed are well defined elements of V such that 0g«a« and

O^v^v.
Thus, V= V(Y, Ry) satisfies the Decomposition Property and V

is a Riesz group. This completes the proof.

The following remains an open question : if Y is an arbitrary po-set

and for each 7Gr, Ry is the real numbers with the natural order, is

F(r, P7) a Riesz group?
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