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1. Introduction. In 1961, S. Kobayashi [4] proved the following:

Theorem. Let M be a complete Riemannian manifold. If there exists

a point p of M such that no geodesic passing through p contains a

point conjugate to p, then the universal covering space of M is diffeo-

morphic to Euclidean space. More precisely, the exponential map

exp,: Mp—+M is a covering map.

This theorem had been proved by Myers [6] under the assumption

that M was analytic, and this assumption was essential in his proof.

Kobayashi, and also Helgason in his book [3], showed that analytic -

ity was superfluous and could be replaced with mere smoothness of a

sufficiently high order.

We want to consider this theorem for infinite-dimensional Rie-

mannian Hubert manifolds. We do not know if it is true in unre-

stricted generality; the introduction in §3 of an ad hoc assumption

on the metric is necessary for our method to work. But the class of

manifolds satisfying the assumption is large, including all negatively

curved manifolds as well as some which are everywhere positively

curved. The main results are stated in Theorems 4.1 and 4.4.

Our definition of completeness is as follows: a manifold M is com-

plete if it is Cauchy complete in its intrinsic topological metric. Un-

fortunately, infinite-dimensional manifolds complete in this sense

may be incomplete in another sense: they may bear two points un-

connectable by a minimal geodesic (see Example 5.1).

The question of conjugate points arises. They may be defined in

the finite-dimensional case as singularities of the exponential map.

We define them similarly in the infinite-dimensional case but find in

§2 that two types appear, which we call monoconjugate and epicon-

jugate. The epiconjugate are the more sensitive measure of pathology.

§5 contains examples demonstrating that pathological distributions

of conjugate points can occur. One effect of the ad hoc assumption of

§3 is to rule out the possibility of conjugate points.

The author wishes to thank W. Klingenberg who brought Koba-

yashi's paper [4] to his attention while the writing of this present
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paper was in a preliminary stage. The results of this paper, obtained

under stronger hypotheses, form part of the author's dissertation

[2]. The author wishes to express his gratitude to his teacher, Pro-

fessor Leon W. Green, for his advice and encouragement.

2. Conjugate points. A recent book of Lang [5] has exposed the

foundations of Riemannian geometry on infinite-dimensional Hubert

manifolds, showing that many of the objects of classical local Rie-

mannian geometry exist regardless of whether or not the dimension

is finite. We assume that M is a smooth connected Hubert manifold

supplied with a Riemannian metric g. To save repetition and needless

exceptions, M will be infinite dimensional unless otherwise stated.

Then, exactly as in the Euclidean case, M bears a unique symmetric

connection V compatible with g and the curvature mapping R is

given in terms of the Lie bracket by R(X,Y)Z = Vex, y\Z

— [ Vx, Vr]Z. We may speak of covariant differentiation along

curves, of geodesies, and of the exponential maps Exp and exp. There

exist at each point of M normal coordinate neighborhoods and White-

head simple convex neighborhoods.

Let L(y) be the length of the smooth arc y. The intrinsic metric p

is defined on M by p(x, y) = inf {L(y) \ y is a smooth arc from x to y}.

Define M to be complete if and only if it is complete with respect to p

and assume from this point on that all manifolds considered are com-

plete. Exactly as in the Euclidean case, we can prove that geodesies

can be continued for all values of the arc length so that, for each p in

M, the domain of expp is all of the tangent space Mp.

Fix p in M and v in Mp. Let 7 be a geodesic issuing from p in the

same direction as v, parametrized by arc length, with y(0)=p. Let

t.: MP—>Mj(t) be parallel translation along y. We are interested in

studying the singularities of expp = exp, so want to compute d exp„.

It is well known that d exp, can be expressed in terms of the solution

of a certain linear differential equation, the Jacobi differential equa-

tion (JDE). If /: R^Mp, then JDE is

/"(,) + TTlR(y'(s), r.J(s))y'(s) = 0.

It is convenient to define a family K of linear transformations of Mp

into itself by K(s)y = r~1R(y'(s), r,y)y'(s), so that the JDE becomes

(2.1) J"(s) + K(s)J(s) = 0.

Make the standard identification of (Mp)v with MPXMP so that w in

(Mp)v can be considered as lying in Mp itself. Let Bw be a solution of

(2.1) with 5„(0) = Oand B'„(0) = w. Then, if <r = ||»||, dexp. w

= Tr(o^1BV!(<r)). It is easy to see that d exp, v = t,v.
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Let q — exp v. We say that q is epiconjugate (resp. monoconjugate)

to /» along y if d exp, is not epimorphic (resp. monomorphic). It will

follow from later calculations that each species is symmetric in /> and

q. Since r, is an isometry and scalar multiplication is an isomorphism,

it is enough to look at the solutions B oi the Jacobi equation (2.1) to

determine conjugacy. In terms of the solution Bw introduced above,

s gives an epiconjugate point if there can be found a y in Mv with

no w in Mp for which Bw(s) =y. Similarly, s gives a monoconjugate

point if Bw(s) —0 for some w.

If M is finite dimensional, these two species coincide, but they are

not the same on infinite-dimensional manifolds in general, as we will

show later by example. We can prove :

Theorem 2.1. q monoconjugate to p implies q epiconjugate to p. q

epiconjugate to p and image d exp„ closed imply q monoconjugate to p

To prove Theorem 2.1, we will use the adjoint to d exp,. For con-

venience, let Av = r~xd exrjv and continue to let <r = ||i;||. Let E(s)

= d2/ds2+K(s). One of the symmetries of P is equivalent to K(s)

= K(s)* so that the operator E(s) is formally self-adjoint. Letting

(•,•) be the inner product in M„, we apply the Green's integral

identity on the interval [0, a] to vector fields A and P, getting

f'{(E(s)A(s), B(s)) - (A(s), E(s)B(s))}ds
(¿.¿)     Jo

= (A'(a), B(o-)) - (A(o-), B'(o-)) - (A'(0), P(0)> + (A(0), P'(0)>.

Suppose that A satisfies E(s)A(s) ^0, .4(0) =0, and ^4'(0) =w, while

P satisfies E(s)B(s) = 0 and B(<r) =0. After dividing (2.2) by a, we

find

(2.3) (A,w, B'(<r)) = (w, -^5(0».

From (2.3), we derive a method for calculating A*. Let k(s) = K(a—s)

and B satisfy

(2.4) B"(s) + k(s)B(s) = 0

on [0, <r] subject to P(0)=0 and P'(0)=y Then A*y = o-1B(a). In

general terms, A? is calculated by solving the JDE backwards along

7 from a to 0.

If G is a solution of (2.1) on [0, a], then c given by c(s) = C(<r — s)

is a solution of (2.4) on [0, a]. If C(0) = C(a) =0, then c(0) =c(a) =0.

Thus, the correspondence C<r+c sets up a one-to-one correspondence

of kernel A, and kernel A?. By general theorems on operators and

adjoints, kernel A* coincides with the orthogonal complement of the
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closure of image A,. Therefore, if kernel A, is nontrivial (q = exp v is

monoconjugate), then kernel A* is nontrivial, so image A, can not be

all of Mp (g = exp v is epiconjugate). On the other hand, if image A„

is closed, the argument reverses. Therefore we have proved Theorem

2.1.
We can now show the symmetry of conjugate pairs. Let us first re-

mark that if q = exp v is on y then exp„ has a differential along y at p

calculated by means of the appropriate JDE, which is (2.4). There-

fore, if p =expa u, d exp3,u is determined (up to parallel translations)

by A*. It is easy to see that the pair (A„, A*) can only occur in the

states (Ii, Ii), (II2, II2), and (1113, II13) of the classification of Taylor

[7], from which the symmetry is clear.

The two species of conjugate points introduced here have geometric

significance. As in the finite-dimensional case, monoconjugate points

are associated with nonminimality of geodesies. Epiconjugate points

are associated with covering properties of the exponential map. If

g = expp v is epiconjugate to p along y, no neighborhood of g in M is

fully covered by geodesies which issue from p and neighbor y.

3. An assumption. Let p be a fixed point in M. M will be said to

satisfy condition (b) at p if :

for each r > 0 there is a constant 5r > 0 such that for every v in Mp

with \\v\\ <r and for every w in (Mp)v there holds \\d exp, w\\ !5r||w||.

If M has nonpositive sectional curvatures, it is classical [l, p. 342]

that condition (§) holds at every p in M with ôr=l. But a manifold

may have everywhere positive sectional curvatures and still satisfy

condition (5) at some point. For example, a paraboloid of revolution

in Euclidean three-space satisfies condition (5) with its vertex as fixed

point.

If 7 is a geodesic issuing from p in the same direction as v, no

point on 7 is conjugate to p in either species. For at g = expi>, if

d exp, w = 0 then w = 0 by condition (5). Also by condition (5), image

¿exp, is closed. Therefore, using Theorem 2.1, q is neither mono-

conjugate nor epiconjugate to p.

Conversely, suppose 5 = exp v not epiconjugate to p along 7. Then,

by Theorem 2.1, q is not monoconjugate to p, so d exp, is one-to-one,

onto, and continuous. By a standard result of the theory of normed

spaces [7, p. 180], d exp, is bicontinuous. This means that for each v

there is a 5,>0 such that ||¿ exp, w\\ I5,||w||. But as ||i>||—»°°, it may

be that S, can approach 0 in such a way as to be unbounded away

from 0 on any disc of large enough radius, so that condition (S) may

not be satisfied. Thus, condition (ô) appears stronger than requiring

no conjugate points.
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4. An infinite-dimensional form of the theorem of Myers and

Kobayashi. We will prove:

Theorem 4.1. Let M be a complete simply-connected Hilbert mani-

fold satisfying condition (5) at p. Then M is homeomorphic to its local

Hilbert space model.

Let P = expp Mp. We will show, first, that T= M and, second, that

expp is a covering map.

Lemma 4.2. T is open in M.

Proof. Since condition (Ô) is satisfied at />, A, has no kernel or

cokernel. Therefore, it is a topological isomorphism. By the Inverse

Function Theorem, expp is a local diffeomorphism and so T is open

in 714".
By Lemma 4.2, T is a submanifold of M and inherits a Riemannian

structure.

Lemma 4.3. T is closed in M.

Proof. (See [l, p. 346].) Let g be a limit point of T and let X:

[0, l]—*M he a smooth curve of length /, parametrized by arc length,

with X(0) =/> and X(/) =q. We do not know yet that q can be reached

from /> along a geodesic but, since p has a normal neighborhood, there

is an interval [0, r) such that X([0, r)) QT. Let t he the supremum

of r with this property. We will show that \(t) =q and that q is in P.

Since expp is a local diffeomorphism, X can be lifted to a unique

curve 0: [0, t)-*Mp such that 0(0) =0 and expj,-0=X. Applying con-

dition (5) on the sphere {||»|| <2l\ we find the inequality

(4.1) L(e\[a,b])^ô7i\b-a)

whenever O^a^b^t. Let Si<s»< • • - be a sequence of reals with

sups„ = i. The points X„=X(.sB) form a Cauchy sequence in M. By

(4.1) the points 0n = 6(sn) form a Cauchy sequence in Mp. MP is com-

plete; therefore 0„—*y in M„. By continuity, X(2) =expP y and \(t) is an

interior point of T since expp is a local diffeomorphism. Therefore

t = l, \(t) =q, and q is in T. This completes the proof of Lemma 4.3.

Lemmas 4.2 and 4.3 have made no appeal to simple connected-

ness and together they prove the first assertion of the following:

Theorem 4.4. Let M be a complete Hilbert manifold satisfying con-

dition (Ô) at p. Then expp is onto M. The pair (Mp, exr>p) is a covering

manifold of M.



1370 NATHANIEL GROSSMAN [December

To complete the proof of Theorem 4.4, we may proceed exactly as

in Kobayashi [4, §3], since only local properties of geodesies are used

in his proof.

To complete the proof of Theorem 4.1, we note that, if M is

simply connected, the uniqueness of the universal covering manifold

implies that Mp and M are homeomorphic by way of expp. Since

expp is a local diffeomorphism, M and Mv are even globally diffeo-

morphic.

Remark. We have shown that each point of M can be joined to p

by a geodesic which is unique if M is simply connected. In this case,

the unique geodesic is also minimal, since expp covers all of M by a

single normal coordinate system.

5. Pathological examples. Let l2 he the Hilbert space of real se-

quences x = (Xi\i = l, 2, ■ ■ ■ ) such that ||x|| = V2^xt < °°- Let

(a¿ | t = l, 2, • • • ) be a sequence of positive real numbers bounded

away from 0 and <». Then the set M = {xEh\ ^ai^< = l} isasmooth

connected Hilbert submanifold, complete in the induced Riemannian

metric. This manifold is an ellipsoid, and is diffeomorphic with the

unit sphere in l2.

Example5.1 (A missing minimal geodesic). Choose <x< = (2 — l/i)2.

Since öi = l, the points N=(l, 0, 0, • • • ) and S=( —1,0,0, •■■ ) are

on M. Even though it is clear that N and 5 together lie on infinitely

many geodesic arcs, we are going to show that they are connected by

no minimal geodesic.

Define T: M—>M by Tx = y, where

1
2-

*- 1
yi = xi, y2 = 0, y< =-—- Xj_i    for »13.

2 - —
i

Then F is a smooth map with only N and 5 as fixed points. It is

easily seen that any smooth curve from N to S is taken by T into

another such curve which is strictly shorter than the original. There-

fore, there can be no minimal geodesic from N to S.

M is simply connected (even contractible over itself to a point).

But all the sectional curvatures of M are >0, and condition (ô) is

not satisfied since A^has (infinitely many) conjugates along geodesies.

This example should be compared with Theorem 4.1.

Example 5.2 (Pathological distribution of conjugate points).

Let ai = a2 — 1, with N and 5 as in the last example. Let y be the geo-
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desic issuing from N given by Xi = cos 5, #2 = sin s, **—»4— • • • — 0,

where s represents arc length. N is given by 5 = 0, 5 by 5 = 7r.

One may now compute that the monoconjugate points to A on 7

arise at the arc lengths s = kw/\/cii for all integers k and for 4 2:3.

Suppose that a4 <a6 < • • • <lub a^ = 1. Then s =ir is a limit point of

a sequence of monoconjugate points given by s = ir/\/ai. The limit

point will be monoconjugate or not according as 03 = 1 or ^1. We

recall that in the finite-dimensional case, conjugate points may never

have clustering arc lengths. If the limit point is not monoconjugate it

is epiconjugate and in a pathological way, since one may show that

the image of d exp is there a proper dense subset. The calculations are

omitted since they are straightforward.

One may modify this procedure to produce a whole interval of

conjugate points in a neighborhood of S, consisting of a dense subset

of monoconjugate points with the remainder epiconjugate of the

pathological type just discussed.
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