SOME CHARACTERIZATIONS OF SEMI-LOCALLY CONNECTED SPACES

YU-LEE LEE1

Let (X, \mathfrak{A}) be a connected T_1 -space and let \mathfrak{C} be the class of all closed connected subsets of (X, \mathfrak{A}) . Define the operator K on all the subsets of X as follows: K(A) is the intersection of all the finite unions of elements of \mathfrak{C} which cover A. Then we see that K has the following properties:

- (1) If $A \subset X$, then K(A) is closed and $Cl(A) \subset K(A)$.
- (2) If A is connected in (X, \mathfrak{A}) , then Cl(A) = K(A).
- (3) If A is closed and connected, then K(A) = A.
- (4) The operator K satisfies the Kuratowski axioms.

Thus K defines a new topology v for X, we call v the derived topology of v.

- (5) The space (X, \mathcal{V}) is a connected T_1 -space.
- (6) If A is connected in (X, \mathfrak{A}) , then A is connected in (X, \mathfrak{V}) .
- (7) If A is closed and connected in (X, \mathfrak{A}) , then A is closed and connected in (X, \mathfrak{V}) .
 - (8) The topology v is contained in u.

Recall from [1] that a connected T_1 -space X is said to be semi-locally connected (s.l.c.) at x provided there exists a local open base at x such that X-V has only a finite number of components for any V in the local open base at x. The space X is s.l.c. provided X is s.l.c. at every x in X.

THEOREM 1. The connected T_1 -space (X, \mathfrak{A}) is s.l.c. if and only if Cl(A) = K(A) for any subsets A of X.

PROOF. Suppose (X, \mathfrak{A}) is s.l.c., $A \subset X$ and $x \notin Cl(A)$. Then there exists an open neighborhood V of x such that X - V is the union of a finite number of closed connected sets which cover A. Hence $x \notin K(A)$ and therefore Cl(A) = K(A).

Conversely suppose Cl(A) = K(A) for all $A \subset X$ and U is an open neighborhood of a point x in X. Since Cl(X-U) = K(X-U), we have $x \notin K(X-U)$. Therefore there exists a finite family of closed connected sets C_1, C_2, \cdots, C_n which covers X-U and such that $x \notin C_i$ for each $i=1, 2, \cdots, n$. Since $X-\bigcup \{C_i: i=1, 2, \cdots, n\}$ is open and is contained in U, it follows that X is s.l.c. at X.

Received by the editors October 7, 1964.

¹ This research was supported by the National Science Foundation under Grant number GP-1457.

THEOREM 2. Let (X, \mathfrak{A}) be a connected T_1 -space and let \mathfrak{V} be the derived topology of \mathfrak{A} . Then (X, \mathfrak{V}) is s.l.c.

PROOF. Since (X, \mathbb{U}) is a connected T_1 -space by (5), we can consider the derived topology \mathbb{W} of \mathbb{U} with the defining operator J. Let \mathbb{C} and \mathbb{C}' be the families of all closed connected subsets of (X, \mathbb{U}) and (X, \mathbb{U}) respectively. By (1), $\mathrm{Cl}(A) \subset K(A) \subset J(A)$ for any $A \subset X$. Since by (7), $\mathbb{C} \subset \mathbb{C}'$, it follows that any finite cover of A by elements of \mathbb{C} is a finite cover of A by elements of \mathbb{C}' . Hence by definition of K and K0 we have $K(A) \supset K(A)$ 1. By Theorem 1, K1, K2 is s.l.c.

COROLLARY 1. A topological space (X, \mathcal{V}) is s.l.c. if and only if \mathcal{V} is the derived topology of some connected T_1 -space (X, \mathcal{V}) .

COROLLARY 2. A locally connected continuum (X, \mathfrak{A}) is s.l.c.

PROOF. Let A be a closed set in (X, \mathfrak{A}) and $p \notin A$. Then there exists a finite family of closed connected sets which covers A but not p. Hence $p \notin K(A)$ and K(A) = A. By Theorem 1, (X, \mathfrak{A}) is s.l.c.

A mapping f of (X, \mathfrak{A}) into (Y, \mathfrak{V}) is called semi-connected if whenever A is a closed connected set in (Y, \mathfrak{V}) , $f^{-1}(A)$ is a closed connected set in (X, \mathfrak{A}) . The following theorem is a generalization of a result of Tanaka [2] and W. J. Pervin and N. Levine [3].

THEOREM 3. A semi-connected mapping f from (X, \mathfrak{A}) into a s.l.c. space (Y, \mathfrak{D}) is continuous.

PROOF. Let A be a closed subset of Y; then

$$A = Cl(A) = K(A)$$
$$= \bigcap \{ U \{ C : C \in C' \} \}$$

where C' is a finite family of closed connected subsets which covers A. Hence

$$f^{-1}(A) = \bigcap \{ \bigcup \{ f^{-1}(C) : C \in \mathfrak{C}' \} \}$$

is closed and f is continuous.

THEOREM 4. If (X, \mathfrak{A}) is a connected T_1 -space, then the following statements are equivalent:

- (a) (X, \mathfrak{U}) is s.l.c.
- (b) Every semi-connected mapping f from a topological space Y into (X, \mathfrak{A}) is continuous.
- (c) The identity mapping from (X, \mathcal{V}) onto (X, \mathcal{U}) is continuous where \mathcal{V} is the derived topology of \mathcal{U} .

PROOF. The previous theorem shows that (a) implies (b). The

identity mapping i is semi-connected, by (7). Hence (b) implies (c). If (c) holds then i is a homeomorphism. By Theorem 2, (X, \mathfrak{A}) is s.l.c.

BIBLIOGRAPHY

- 1. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. Vol. 28, Amer. Math. Soc., Providence, R. I., 1942.
- 2. T. Tanaka, On the family of connected subsets and the topology of space., J. Math. Soc. Japan 7 (1955), 389-393.
- 3. W. J. Pervin and N. Levine, Connected mappings of Hausdorff space, Proc. Amer. Math. Soc. 11 (1960), 688-691.

University of Connecticut and University of Oregon

A TECHNIQUE FOR CONSTRUCTING EXAMPLES

MARY ELLEN RUDIN

The word *space* in this paper will refer to Hausdorff spaces. I have recently been asked the following questions.

- 1 (by the topology class of R. H. Bing). Is there a regular, sequentially compact space in which some nested sequence of continua intersect in a disconnected set?
- 2 (by E. Michael). Is there a normal, sequentially compact but not compact, space having a separable, metric, locally compact, dense subset?

Examples showing that the answer to both questions is yes, modulo the continuum hypothesis, are easily constructed using a technique I have often used before. The technique, described in §I, is perhaps more interesting than the particular examples which are given in §II. §III gives a variation of the technique and raises some questions.

I. This technique is useful in the construction of pathological spaces having nice dense subsets.

Let R be the wedge in the plane consisting of all points (x, y) such that $0 \le x \le 1$ and $0 \le y \le x$; let $T = R - \{(0, 0)\}$.

Let F be the set of all continuous real valued functions whose domain is the set of all positive numbers less than or equal to 1 and whose graph lies in T.

There is a natural partial ordering of the terms of F: if f and g

Received by the editors December 16, 1964.