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Let (X, It) be a connected Fi-space and let 6 be the class of all

closed connected subsets of (X, It). Define the operator K on all the

subsets of X as follows: K(A) is the intersection of all the finite

unions of elements of 6 which cover A. Then we see that K has the

following properties:

(1) If A EX, then K(A) is closed and Cl(A) EK(A).
(2) If A is connected in (X, 11), then Cl(A) =K(A).

(3) If A is closed and connected, then K(A)=A.

(4) The operator K satisfies the Kuratowski axioms.

Thus K defines a new topology *U for X, we call V the derived

topology of CU.

(5) The space (X, V) is a connected Fi-space.

(6) If A is connected in (X, It), then A is connected in (X, V).

(7) If A is closed and connected in (X, clt), then A is closed and

connected in (X, V).

(8) The topology V is contained in 11.

Recall from [l] that a connected Fi-space X is said to be semi-

locally connected (s.l.c.) at x provided there exists a local open base

at x such that X — V has only a finite number of components for any

V in the local open base at x. The space X is s.l.c. provided X is

s.l.c. at every x in X.

Theorem 1. The connected Ti-space (X, It) is s.l.c. if and only if

Cl(A) =K(A) for any subsets A of X.

Proof. Suppose (X, 01) is s.l.c, A EX and xECl(A). Then there

exists an open neighborhood V of x such that X — V is the union of

a finite number of closed connected sets which cover A. Hence

xEK(A) and therefore Cl(A)=K(A).
Conversely suppose Cl(A) = K(A) for all A EX and U is an open

neighborhood of a point x in X. Since Cl(X—U)=K(X—U), we

have xE:K(X— U). Therefore there exists a finite family of closed

connected sets C\, C2, • • • , C„ which covers X—U and such that

xECi for each i — i, 2, ■ - - , n. Since X—U{C<:t = l, 2, • • • , «} is
open and is contained in U, it follows that X is s.l.c. at x.
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Theorem 2. Let (X, 11) be a connected Ti-space and let V be the de-

rived topology of 11. Then (X, V) is s.l.c.

Proof. Since (X, V) is a connected Pi-space by (5), we can con-

sider the derived topology W of V with the defining operator J. Let

C and C' be the families of all closed connected subsets of (X, 11) and

(X, V) respectively. By (1), C\(A)QK(A)QJ(A) for any A QX.
Since by (7), &QQ', it follows that any finite cover of A by elements

of e is a finite cover of A by elements of 6'. Hence by definition of K

and / we have K(A) Z)J(A). By Theorem 1, (X, V) is s.l.c.

Corollary 1. A topological space (X, V) is s.l.c. if and only if V

is the derived topology of some connected Ti-space (X, 11).

Corollary 2. A locally connected continuum (X, 11)) is s.l.c.

Proof. Let A be a closed set in (X, 11) and pQA. Then there

exists a finite family of closed connected sets which covers A but not

p. Hence pQK(A) and K(A) =A. By Theorem 1, (X, 11) is s.l.c.

A mapping / of (X, 11) into ( Y, V) is called semi-connected if

whenever A is a closed connected set in (F, 13), f~*(A) is a closed

connected set in (X, 11). The following theorem is a generalization

of a result of Tanaka [2] and W. J. Pervin and N. Levine [3].

Theorem 3. A semi-connected mapping f from (X, 11) into a s.l.c.

space (Y, V) is continuous.

Proof. Let A be a closed subset of F; then

A = Cl(A) = K(A)

= n{U{C:C£e'}}

where <S' is a finite family of closed connected subsets which covers

A. Hence

f-1(A) = n{ü{f~1(C):CQe'}}

is closed and / is continuous.

Theorem 4. If (X, 11) is a connected Ti-space, then the following

statements are equivalent:

(a) (X, m) is s.l.c.
(h) Every semi-connected mapping f from a topological space Y into

(X, tU) is continuous.

(c) The identity mapping from (X, V) onto (X, 11) is continuous

where V is the derived topology of It.

Proof. The previous theorem shows that (a) implies (b). The
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identity mapping i is semi-connected, by (7). Hence (b) implies (c).

If (c) holds then i is a homeomorphism. By Theorem 2, (X, cll) is s.l.c.
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A TECHNIQUE FOR CONSTRUCTING EXAMPLES

MARY ELLEN RUDIN

The word space in this paper will refer to Hausdorff spaces.

I have recently been asked the following questions.

1 (by the topology class of R. H. Bing). Is there a regular, se-

quentially compact space in which some nested sequence of continua

intersect in a disconnected set?

2 (by E. Michael). Is there a normal, sequentially compact but

not compact, space having a separable, metric, locally compact,

dense subset?

Examples showing that the answer to both questions is yes, mod-

ulo the continuum hypothesis, are easily constructed using a tech-

nique I have often used before. The technique, described in §1, is

perhaps more interesting than the particular examples which are

given in §11. §111 gives a variation of the technique and raises some

questions.

I. This technique is useful in the construction of pathological

spaces having nice dense subsets.

Let P be the wedge in the plane consisting of all points (x, y) such

that O^x^l and 0¿y¿x; let P = P-{(0, 0)}.

Let F he the set of all continuous real valued functions whose

domain is the set of all positive numbers less than or equal to 1 and

whose graph lies in T.

There is a natural partial ordering of the terms of F: if / and g
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