CELLULARITY AT THE BOUNDARY OF A MANIFOLD!
CHARLES GREATHOUSE

I. Introduction and definitions. A closed subset X of an #-mani-
fold M» will be said to be cellular at the boundary (CAB) of M if
there is a sequence {B;‘} of closed #n-cells in M" satisfying:
BN [BA(M™)] = B a closed (n — 1)-cell, B! C Int(B{™),
[B2NInt(M™) ] Clnt[BiNInt(M™)], and N2, Bf=X. Thus, the
notion of CAB is the analogue, for subsets intersecting the boundary
of a manifold, of the concept of cellularity introduced by Brown in
[1].

Theorem I1.2 shows that CAB sets behave like points on the
boundary of a manifold. With the aid of a theorem of McMillan's
[2], we give criteria for a compact absolute retract to be CAB of a
piecewise-linear #-manifold for n#4. A product theorem for CAB
sets is given and with some restrictions on dimensions, we show that
subarcs of a CAB arc are either CAB or cellular subsets of the interior
of the manifold.

We assume a familiarity with [2], [3], and [4]. R, S* denote n-
space and the n-sphere. D"(j) is the closed n-ball in R* with center
at the origin and radius j. I"(j) =D"1(j) X [0, j]. The empty set is
denoted by &.

Let A, B be subsets of an z#-manifold M" and let & be a positive
number. Then Int(M"), Bd(M™) denote the interior and boundary
of M™ respectively, d(4, B), the distance from 4 to B, Cl(4), the
closure of 4 in M*, and V;(4), the subset of M" consisting of points
x such that d(x, 4) <8é.

Let M" be an #-manifold with nonempty boundary and let X be a
subset of M™ such that XNBd(M")= &. Then 2M" denotes an n-
manifold with empty boundary obtained by taking two copies M7, M3
of M and identifying corresponding boundary points. Similarly, if
X1, X, are the copies of X in M7}, M3 respectively, then 2X is the
subset of 2M" consisting of X;\UX,.

II. The pointlike character of CAB sets.

LemMma 11.1. If X is CAB of an n-manifold M, a sequence {(B}')’ }
of closed n-cells may be picked which satisfy (in addition to the necessary
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conditions for X to be CAB of M™) the following: (Bf™")’ is a flat closed
(m—1)-cell in BA[(BD'], [(B})'NInt(M")]=~R*1X[0, 1), and
Bd[(B})'] —Int[(BrY)] is bicollared in M.

ProoF. Let { B}} satisfy the necessary conditions for X to be CAB
of M. We can pick an (n—1)-cell F;~! satisfying: Bj;; CInt(F;™?)
CF 1 ClInt(B;™) and Bd(F™") is bicollared in B}~'. Then there
is a homeomorphism &, of B} onto I*(1) such that k;(F?!) = D*1(1).
There is an €, 0<e;<3}, such that d[r(B}fUX), Bd[I*(1)]
—Int[D*1(1)]]>e:. Take (B}) =hi'[I*(1—¢;)]. Then {(B}‘)’} is
the required sequence.

THEOREM I1.2. Let X be CAB of an n-manifold M and let C* be a
closed n-cell in M satisfying X CC~, [XNBd(M™)]=[XNBd(C")]
ClInt[C*NBA(M™)]. Then there is a map h of M™ onto itself such that
k| CI(M*—C") =1, k(C") = C*, h(X)=pEBd(M") and h| M*—X isa
homeomorphism of M*—X onto M"—{p}. Thus, M*/X ~ M.

Proor. Take a sequence {B;‘} assured by Lemma I11.1. We may
assume that B{CC* and [B}N\Bd(C"*)]CInt[C*N\Bd(M™)]. In the
manner of the proof of Theorem 1 of [1], we inductively pick a se-
quence {h;} of homeomorphisms of M™ onto itself satisfying:
| CI(M"— C") =1, the diameter of k,(B}) is less than 1, hi| M»— B}
=h;|M"—B§', and the diameter of h,..(B},,) is less than 1/741.
Then h=Ilim; k; is the required map.

CoROLLARY I1.3. Let {X;|i=1, - - -, k} be a finite collection of dis-
joint subsets of an n-manifold M* such that each X; is either cellular in
Int(M™) or CAB of M. Then M"=X, where X is the decomposition
space obtained by identifying X ; to a point p;, i=1, - - - | k.

III. CAB criteria for an absolute retract.

Lemma I11.1 (S, p. 33]). If 4 is a closed subspace of a metrizable
space X and if both A and X are absolute retracts, then A is a strong de-
formation retract of X.

LemMa 111.2 (Borsuk [6]). Every locally contractible compact
metrizable space of finite dimension is an absolute neighborhood retract.

TrEOREM I11.3. Let X and Y be finite dimensional (metric) compact
absolute retracts and let Y be a closed subset of X. Then X/Y is a com-
pact absolute retract.

ProoF. Obviously, X/Y is compact and finite dimensional. By
Theorem 2.2 [7, p. 123], X/V is a metric space. By Lemma III.1,
Y is a strong deformation retract of X. Thus, if f is the quotient map
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of X onto X/Y with f(¥)=y, X/Y is contractible to the point y.
This implies that X/Y is locally contractible and by Lemma III.2,
X /Y is an absolute neighborhood retract. Finally, X /Y is a compact
absolute retract since it is a compact contractible absolute neighbor-
hood retract.

Theorem I11.3 will be applied to situations where X is a compact
absolute retract in a manifold M and Y=XNBd(M) is a compact
absolute retract in Bd(M). Then X/Y is a compact absolute retract
in M/Y.1f Yis CAB of M, M/Y =~ M and we may assume that Visa
point in Bd(M) to simplify arguments. In this case, 2X will be a
compact absolute retract in 2M.

LemMa I11.4. Let M be an (n—1)-manifold topologically embedded
in the interior of an n-manifold M*, n>3. Let B*! be a closed (n—1)-
cell in M1, pEInt(B*Y), and let B! be locally flat in M™ except at
p. Then B! is also locally flat at p provided it has a one-sided local
collar at p.

ProOF. Let B” be a closed n-cell in M* such that pEInt(B"). B!
has a one-sided local collar at p, thus, there is a homeomorphism
h: I*(1)>Int(B") such that p=£r(0), k[D**(1)]CInt(B*?), and
r[I*(1) — D*1(1)] N\ M = . Let S*(}) = h[Bd(I*(3)]. Then
Sn1(1) is locally flat in Int(B*) ~ R except at p. Hence, by the corol-
lary in [8], S*!(3) is flat in Int(B"). This implies that B! is
locally flat at p.

LeEmMA I1I1.5. Let X be a compact subset of an n-manifold M*, n>3.
Then X is CAB of M"=XNBA(M™) =Y is a cellular subset of BA(M™)
and X is cellular in 2M™.

Proor. The necessity follows from the definition of CAB and the
fact that Bd(M™) is bicollared in 2M™". Thus, suppose Y is a cellular
subset of Bd(M") and X is cellular in 2M™ We consider X=X, a
subset of M}, where 2M"= M7\UM; joined along their boundaries.
Let f be the quotient map of 2M™ onto 2M"/X and let f(X)=2.
Cellular subsets of the boundary of a manifold are trivially CAB of
the manifold since the boundary is collared in the manifold. There-
fore, Y is CAB of M3 and by Theorem I1.2, f(M3)=~ M3. Thus,
f[Bd(M?)] is collared in f(M3) and by Lemma II1.4, f[Bd(MP)] is
locally flat in f(2M™) at f(X)=p. Hence, we pick a sequence {B;'}
of closed n-cells in f(M7) satisfying the conditions necessary for p to
be CAB of f(M7) and such that f~1(Bj) lies in the interior of some
closed n-cell in 2M* containing X. Then { f“l(B:‘)} is a sequence of
closed n-cells in M7 satisfying the conditions necessary for X to be
CAB of M7.
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THEOREM I11.6. Let X be a compact subset of a piecewise-linear n-
manifold M, n>35, such that X and XNBd(M*) =Y are absolute re-
tracts. Then X is CAB of M*&for each open set U of M™ containing
X, there is an open set V of M such that X CVCU and: (1) each
loop in V—X is homotopic in U—X to a loop in BA(M™") and (2) each
loop in (V—X)NBA(M™) is nullhomotopic in (U—X)NBd(M™).

Proor. The necessity is obvious in view of Lemma II.1. Thus, we
show the sufficiency. We will do this by showing that Y is cellular
in Bd(M™), X is cellular in 2M", and applying Lemma III.5. We
consider X = X; a subset of M7, where 2M»= M}U M3 joined along
their boundaries. Condition (2) together with Theorem 1 of [2] imply
that Y is cellular in Bd(M7) and hence simultaneously CAB of M}
and M3. Theorem II1.3 shows that X/Y is a compact absolute re-
tract. Thus, we may assume that Y=y is a point in Bd(M}).

Let U be an open set in 2M" containing X. We may assume that
UNBA(M7) is an open (n—1)-cell since Y=y is a point. Let U,
= UNM;7. Then U, is an open set in M7 containing X. By hypothesis,
there is a set V; open in M7 such that X C V1C Ui and each loop in
Vi—X is homotopic in U1—X to a loop in Bd(M7). We may also
assume that ViN\Bd(M7}) is an open (n—1)-cell whose closure B»—1
is a closed (n—1)-cell contained in UyN\Bd(M7}). There is a positive
number € and a homeomorphism k: B*~1X [0, €)— UM M2 such that
h|B"‘1><O is the inclusion map and 2[B"1X (0, €) ] CInt(M3). Let
V=V,Uk[Int(B~1) X [0, €)]. We will show that any loop in V—X
is nullhomotopic in U—X.

Let f: S'—»V—X. We assume that f is simplicial and f(S?) is in
general position with respect to Bd(M7). If f(SYN\M?= <, the result
follows trivially. Thus, suppose f(S*) M} &. Then f(S*) N\ M} con-
sists of a finite number of paths in V;—X with endpoints in Bd(M7}).
Let o; be one such path with endpoints p;, ¢s. Then p;, ¢; can be
joined by an arc ; in (Vi—X)NBd(M7). If I;=a;\UB;, by hypothesis,
I; is homotopic in U1—X to a loop in Bd(M7) and hence is null-
homotopic in Uy—X since UyN\Bd(M}) is an open (n—1)-cell. This
implies that a; is homotopic in U;—X to 8; with p;, ¢, fixed through-
out the homotopy. Since VN\M;=hr[Int(B~?) X [0, €], f(SHNME
is homotopic in VM M3 to a subset of Int(B*!)—y with the homo-
topy fixed throughout on Int(B»!). Thus, f(S') is homotopic in
U—X to a loop in (U—-X)NBd(M7) and hence is nullhomotopic in
U—X. Theorem 1 of [2] implies that X is cellular in 2M* and Lemma
I11.5 shows that X is CAB of M~».

REMARK. Theorem III.6 holds for n =35 if we replace condition (2)
by condition (2’) requiring ¥ to be a cellular subset of Bd(M™).
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LemMA II1.7. Let X be a closed subset of I"(1). Then X is CAB of
I"(1)eXNBd[I*(1) ]| =Y is a cellular subset of BA[I"(1)] and 2X is
cellular in 2I*(1) = S».

Proor. The necessity is obvious. Thus, we show the sufficiency.
As usual, 2I*(1) =I7(1)\UI3(1) joined along their boundaries. We
may assume that Y=y is a point of Bd[I}(1)] since Y is CAB of
I;(1). Let f:2I*(1)—>2I*(1)/2X =S* be the quotient map with
f(2X) =f(y) =p. Now f[Bd(I7(1))] is locally flat in f[2I"(1)] except
possibly at p. If n3, f[Bd(I7(1))] is flat. If n=3, either f[I7(1)] or
f[I2(1)] is a closed 3-cell [9]. In either case, we may assume without
loss of generality that f[I7(1)] is a closed n-cell. The completion of
the proof follows as in the proof of Lemma IILS.

TuEOREM I11.8. Let X be a compact subset of a piecewise-linear 3-
manifold M® such that X and XNBd(M?) =Y are absolute retracts
and such that for some open set 0 of M? containing X, the pair (0,
0NBd(M?)) is embeddable in (I3(1), BA[I3(1)]). Then X is CAB of
M3<for each open set U of M? containing X, there is an open set V of
M2 with X CVCU and each loop in V—X is nullhomotopic in U—X.

ProoF. The hypothesis on 0 allows us to assume that M?*=1I3%(1).
Y is cellular in Bd[I3(1)] since it is a compact absolute retract in the
interior of a 2-manifold. Hence, we assume that Y=y is a point of
Bd[3(1)].

Let U be an open set of 2I3(1) =I3(1)\UI3(1) =~ S? containing 2X
= X,\UX,. We may assume that U is symmetric with respect to I3(1)
and I3(1), and that UNBd[3(1)] is an open 2-cell. Then by hypoth-
esis and a little care, we obtain an open set V of 2I3(1) such that V
is symmetric with respect to I3(1) and I3(1), VNBd[Z}(1)] is an
open 2-cell, X;CV;=[VNI}(1)]CU;=[UNI(1)], and each loop in
V;— X, is nullhomotopic in U;—X;.

Let f: S'—>V —2X. We suppose that f is simplicial and that f(S?')
is in general position with respect to Bd[If(1)]. Then f(SYNI}(1) is
a finite collection of paths in V;—X with endpoints in Bd[I3(1)]. As
in the proof of Theorem II1.6 we join these endpoints with arcs in
(Vi—X)NBd[I}(1)] and obtain a homotopy pulling f(S!) into
(U — X) NBd[(1)]. Since (U — X) N Bd[(1)] and
(V—=X)NBA[I3(1)] are open 2-cells, there is another homotopy pull-
ing f(SY) into (Vi—X)NBd[I}(1)]=(V~X)NBd[I}(1)] and then,
by hypothesis, it is nullhomotopic in Uy—X. Thus, by Theorem 1’ of
[2], 2X is cellular in 2I3(1), and by Lemma IIL7, X is CAB of
I3(1) = M3(1).
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LeEMMA I11.9. Let X be a compact subset of a piecewise-linear 3-
manifold M3 Then X is CAB of M*<XNBd(M?) =Y is cellular in
Bd(M?) and 2X is cellular in 2 M3,

PRrOOF. As usual, the necessity is obvious. Thus, we show the suffi-
ciency. Let U be an open set of M? containing X. Then 2U = U,U U,
is an open set of 2 M*= M?\U M3 containing 2X = X;\UX,. By hypoth-
esis, there is a closed 3-cell B? such that 2X CInt(B%) CB*CU. By
Theorem 3 of [2], we may assume that B3 is a piecewise-linear 3-cell.
We also suppose that Bd(B?) is in general position with respect to
Bd(M}). Then Bd(B*)NBd(M7) consists of a finite number of simple
closed curves. We may assume that B? has been cut down, by remov-
ing inessential simple closed curves on Bd(B?), to a submanifold N3
such that 2X CInt(N?), N3\M?=N; is a cube with handles, and
N3N\Bd(M?) =D is a disk with holes. If D is a disk, we are through.
If D is a disk with # holes, we may “cut one of the handles” of either
Njor N, to reduce D to a disk with (# —1) holes. By induction, we ob-
tain a closed 3-cell (B?)’ either in U, or U, of the required type to
show that either X, is CAB of M? or X, is CAB of M3.

THEOREM I11.10. Let X be a compact 1-dimensional subset of a piece-
wise-linear 3-manifold M® such that X and XNBd(M3) =Y are ab-
solute retracts. Then X is CAB of M3<for each open set U of M? con-
taining X, there is an open set V of M? such that X CV CU and each
loop in V—X is nullhomotopic in U—X.

PROOF. 2X is a compact absolute retract in 2M%. D. R. McMillan
pointed out to the author that some neighborhood of 2X is embed-
dable in R?® since 2X is 1-dimensional. A proof similar to that of
Theorem III.8 shows that 2X is cellular in 2M?3. Again, Y is cellular
in Bd(M?) and thus Lemma III1.9 implies that X is CAB of M3.

TraeoREM II1.11. Let X be a compact subset of an i-manifold M?,
1=1, 2, such that X and XNBd(M?) =Y are absolute retracts. Then X
is CAB of M* and hence M¢/X ~ M:.

Proor. The case 1=1 is trivial. If ¢=2, Y is cellular in Bd(M?),
2X is cellular in 2M? and an easy argument completes the proof.

IV. CAB sets in products.

LeMMA IV.1. Let N*, M™ be n, m manifolds respectively such that
Bd(N")# & and Bd(M™) = . Then 2(N*X M™) =~ (2N*) X M™.

PROOF. 2(N"X M™) consists of two copies of N*X M™ joined along
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Bd(N*X M™) = [B(N") X M=]\U[N*XBd(M™)], while (2N»)XM=
consists of two copies of N*X M™ joined along Bd(N") X M™.

THEOREM IV.2. Let N*, M™ be piecewise-linear n, m manifolds re-
spectively such that BA(N*) = &, BA(M™) =&, and n=2, m=1. Let X
be a compact subset of N*, Z a compact subset of M™, and suppose X,
[XNBA(N™) =Y, and Z are absolute retracts. If m+n=6, then X XZ
is CAB of N*X M™.

ProoF. Theorem 8 of [2] implies that ¥ X Z is cellular in Bd(N")
X Mm=Bd(N*X M™). It also implies that X X Z is cellular in (2N")
X M™. Then Lemma IV.1 implies that X X Z is cellular in 2(N"»X M™).
Hence by Lemma II1.5, X X Z is CAB of N*X Mm™,

A couple of applications of the corollary to Theorem 8 in [2] to-
gether with Lemma III.7 give the following theorem.

TaEOREM IV.3. Let X be a compact subset of D*(1), such that X and
XNBd[D~(1)] are absolute retracts. Then X=XXO0 is CAB of
Dn(l) X [_l’ 1]'

V. CAB arcs. Let a be the arc described in Example 1.3 of [10].
We suppose that a CI*(1) and eN\Bd[I*(1)]={p}, where p is the
“good” endpoint of a. Then « is the monotone union of subarcs each
of which is cellular in Int[73(1) ] and each of which contains the “bad”
endpoint of a, but « is not CAB of I3(1) since 2« is not cellular in
2I%(1).

However, going in the other direction we have the following theo-
rem.

TaEOREM V.1. Let a be an arc CAB of an n-manifold M and let 3
be a subarc of .. Then the following hold:

(1) BCBA(M™), n=5=B is cellular in BAd(M") and hence CAB
of M*,

(2) BN\Bd(M™) is a point (&), n#=4=p is CAB of M* (cellular
in Int(M")),

(3) BNBA(M™) is a proper subarc of B, n=4, 5= is CAB of M.

Proor. Since a is CAB of ‘M*", we may assume that M»=1I"(1). By
Lemma I11.7, aN\Bd[I*(1)] =0 is cellular in Bd[I*(1)]=S"! and
2a is cellular in 2I*(1) = S*. Also ¢ is CAB of I*(1), ¢ is cellular in
2I*(1), and hence 2(a/0) is cellular in 2(I*(1) /a) =~2I*(1) =~ S*. Theo-
rem 6 of [2] together with Lemma II1.7 give (1) and (2) immediately
and (3) follows with an additional easy argument.
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