
CELLULARITY AT THE BOUNDARY OF A MANIFOLD1

CHARLES GREATHOUSE

I. Introduction and definitions. A closed subset X oí an »-mani-

fold Mn will be said to be cellular at the boundary (CAB) of M" ii

there is a sequence {P"| of closed «-cells in Mn satisfying:

PfH [Bd(M")] = B1~l a closed (» - l)-cell, Bfâ C Int(P4fl-1),

[Bnwr\lnt(Mn)]Qlnt[Bir\\nt(Mn)], and (Y-iP^X. Thus, the

notion of CAB is the analogue, for subsets intersecting the boundary

of a manifold, of the concept of cellularity introduced by Brown in

[1].
Theorem II.2 shows that CAB sets behave like points on the

boundary of a manifold. With the aid of a theorem of McMillan's

[2], we give criteria for a compact absolute retract to be CAB of a

piecewise-linear »-manifold for nj^A. A product theorem for CAB

sets is given and with some restrictions on dimensions, we show that

subarcs of a CAB arc are either CAB or cellular subsets of the interior

of the manifold.

We assume a familiarity with [2], [3], and [4]. P", S" denote w-

space and the «-sphere. Dn(j) is the closed «-ball in Pn with center

at the origin and radius j. In(j) =Dn~1(j) X [0, j]. The empty set is

denoted by 0.
Let A, B be subsets of an «-manifold Mn and let 5 be a positive

number. Then Int(17n), Bd(Af") denote the interior and boundary

of Mn respectively, d(A, B), the distance from A to B, C\(A), the

closure of A in M", and V¡(A), the subset of Mn consisting of points

x such that d(x, A) <S.

Let Mn be an «-manifold with nonempty boundary and let ibea

subset of M" such that XT\Bd(Mn) ¿¿ 0. Then 2214"" denotes an «-

manifold with empty boundary obtained by taking two copies Ml, M\

of M" and identifying corresponding boundary points. Similarly, if

Xi, Xt are the copies of X in M^, M% respectively, then 2X is the

subset of 2Af" consisting of XyKJXi.

II. The pointlike character of CAB sets.

Lemma ILL If X is CAB of an n-manifold Mn, a sequence {(P")'}

of closed n-cells may be picked which satisfy (in addition to the necessary
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conditions for X to be CAB of Mn) the following: (5B-1)' is a fiat closed
(n-í)-cell in Bd[CB")'], [(B?)T\lnt(Mn)]~R"-1X [0, 1), and
Bd[(£")']-IntK^r1)'] is bicollared in Mn.

Proof. Let {B"} satisfy the necessary conditions for X to be CAB

of M». We can pick an (w-l)-cell F""1 satisfying: B^ElntW1)

CF?-1 CInt(5B_1) and Bd(F"_1) is bicollared in Bnt~\ Then there

is a homeomorphism h{ of B" onto 7"(1) such that hi(F^~l) =Dn~l(l).

There is an e„ 0<e{<h such that d[hi(Bnt+l\JX), Bd[/"(1)]
-Int[l?»-1(l)]]>€i. Take (Bf)'= hTi[ln(l.-t>)}. Then {(£?)'} is
the required sequence.

Theorem 11.2. Let X be CAB of an n-manifold Mn and let C" be a
closed n-cell in Mn satisfying XEC", [xr\Bd(Mn)] = [Xf\Bd(Cn)]

CInt[CnnBd(ilfn)]. Then there is a map h of Mn onto itself such that

h\ C1(M"- C") = 1, h(C) = C", h(X) =pEBd(M») and h\ M"-X is a
homeomorphism of Mn — X onto Mn — {p}. Thus, Mn/X « Mn.

Proof. Take a sequence {B"} assured by Lemma ILL We may

assume that £nCC" and [BnnBd(C")] CInt[C»r\Bd(M")]. In the

manner of the proof of Theorem 1 of [l], we inductively pick a se-

quence {hi} oí homeomorphisms of Mn onto itself satisfying:

Äi| C1(M"- C") = 1, the diameter of h(BÏ) is less than 1, hi+i\ Mn-Bnt

= hi\Mn—B1, and the diameter of ä,+i(Bb+1) is less than 1/t + l.

Then fe = lim,- hi is the required map.

Corollary 11.3. Lei {X,-|* = l, • • • , k} be a finite collection of dis-
joint subsets of an n-manifold Mn such that each Xi is either cellular in

Int(Af") or CAB of M". Then M"~X, where X is the decomposition

space obtained by identifying Xi to a point pi, i = 1, • • • , k.

III. CAB criteria for an absolute retract.

Lemma III. 1 ([5, p. 33]). If A is a closed subspace of a metrizable

space X and if both A and X are absolute retracts, then A is a strong de-

formation retract of X.

Lemma III.2 (Borsuk [6]). Every locally contractible compact

metrizable space of finite dimension is an absolute neighborhood retract.

Theorem 111.3. Let X and Y be finite dimensional (metric) compact

absolute retracts and let Y be a closed subset of X. Then X/ Y is a com-

pact absolute retract.

Proof. Obviously, X/Y is compact and finite dimensional. By

Theorem 2.2 [7, p. 123], X/Y is a metric space. By Lemma ULI,

F is a strong deformation retract of X. Thus, if/is the quotient map
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of X onto X/Y with f(Y)=y, X/Y is contractible to the point y.
This implies that X/Y is locally contractible and by Lemma III.2,

X/ Y is an absolute neighborhood retract. Finally, X/ Y is a compact

absolute retract since it is a compact contractible absolute neighbor-

hood retract.

Theorem 111.3 will be applied to situations where X is a compact

absolute retract in a manifold M and Y=XC\Bd(M) is a compact

absolute retract in Bd(M). Then X/Y is a compact absolute retract

in M/ Y. If Y is CAB of M, M/ Y^M and we may assume that F is a

point in Bd(ilT) to simplify arguments. In this case, 2X will be a

compact absolute retract in 2M.

Lemma III.4. Let M"-1 be an (n — l)-manifold topologically embedded

in the interior of an n-manifold M", n>3. Let P"-1 be a closed (» —1)-

cell in M"-1, ¿>£Int(Pn_1), and let Pn_1 be locally fiat in Mn except at

p. Then Pn_1 is also locally flat at p provided it has a one-sided local

collar at p.

Proof. Let P" be a closed »-cell in Mn such that pQlnt(Bn). PB_1

has a one-sided local collar at p, thus, there is a homeomorphism

h: I"(l)-+Int(23») such that p = h(0), A[7>-1(i)]CInt(P"-1), and
h[l"(l) - P-Kl)] r\ M"-1 = 0. Let 5-H*) = h[Bd(I"(i)]. Then
Sn~l(i) is locally flat in Int(P") «Pn except at p. Hence, by the corol-

lary in [8], 5"-1(5) is flat in Int(P"). This implies that P""1 is

locally flat at p.

Lemma III.5. Let X be a compact subset of an n-manifold M", n>3.

Then X is CAB of Mn<^X(~\Bd(Mn) = Yisa cellular subset of Bd(il7B)
and X is cellular in 2Mn.

Proof. The necessity follows from the definition of CAB and the

fact that Bd(Mn) is bicollared in 2J7n. Thus, suppose F is a cellular

subset of Bd(Mn) and X is cellular in 2J17". We consider X = Xi a

subset of M?, where 2Mn = M^VJM^ joined along their boundaries.

Let / be the quotient map of 2Afn onto 2Mn/X and let f(X) =p.

Cellular subsets of the boundary of a manifold are trivially CAB of

the manifold since the boundary is collared in the manifold. There-

fore, F is CAB of Ml and by Theorem II.2, f(Ml)~Ml. Thus,
/[Bd(M?)] is collared in f(Ml) and by Lemma III.4, /[Bd(M?)] is
locally flat in f(2Mn) at f(X)=p. Hence, we pick a sequence {PB}

of closed »-cells in /( 717") satisfying the conditions necessary for p to

be CAB of f(M?) and such that f~1(B") lies in the interior of some

closed »-cell in 2il7n containing X. Then {/_1(P")} is a sequence of

closed »-cells in AT/ satisfying the conditions necessary for X to be

CAB of JIT?.
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Theorem III.6. Let X be a compact subset of a piecewise-linear n-

manifold Mn, »>5, such that X and Xr\Bd(Mn) = Y are absolute re-

tracts. Then X is CAB of Mn<^>for each open set U of Mn containing

X, there is an open set V of Mn such that XEYEU and: (1) each

loop in V—X is homotopic in U—X to a loop in Bd(Mn) and (2) each

loop in (V-X)r\Bd(Mn) is nullhomotopic in (U-X)r\Bd(Mn).

Proof. The necessity is obvious in view of Lemma ILL Thus, we

show the sufficiency. We will do this by showing that Y is cellular

in Bd(M"), X is cellular in 2M", and applying Lemma III.5. We

consider X = Xi a subset of M\, where 2Mn = MÏ[<JM2l joined along

their boundaries. Condition (2) together with Theorem 1 of [2] imply

that Y is cellular in Bd(M") and hence simultaneously CAB of M\

and M\. Theorem III.3 shows that X/Y is a compact absolute re-

tract. Thus, we may assume that Y=y is a point in Bd(M*).

Let U be an open set in 2Mn containing X. We may assume that

Uf~\Bd(M?) is an open (» —l)-cell since Y=y is a point. Let Vi

= UC~\M\. Then Vi is an open set in M\ containing X. By hypothesis,

there is a set V\ open in M\ such that X C Vx C Ux and each loop in

Vi—X is homotopic in Ui—X to a loop in Bd(M^). We may also

assume that ViC\Bd(M¡;) is an open (n — l)-cell whose closure Bn~1

is a closed (» — l)-cell contained in Z7inBd(M"). There is a positive

number e and a homeomorphism h: Bn~1X [0, t)-+UC\Ml such that

/¿IS^XO is the inclusion map and h[Bn~lX(0, e)]CInt(Af2"). Let

F= Vi\Jh[lnt(Bn-l)X[Q, «)]. We will show that any loop in V-X

is nullhomotopic in U—X.

Let f: S1-+V—X. We assume that / is simplicial and f(Sl) is in

general position with respect to Bd(M"). If f(S1)C\M^ = 0, the result

follows trivially. Thus, suppose/(51)P\MB^0. Then f(Sl)r\M? con-

sists of a finite number of paths in Vi — X with endpoints in Bd(M?).

Let at be one such path with endpoints pi, <j>i. Then pi, </>,• can be

joined by an arc ßi in (Vi—X)i~\Bd(M?). If Z,=ajU/3,-, by hypothesis,

U is homotopic in U\ — X to a loop in Bd(M¡) and hence is null-

homotopic in Ui — X since UiC^Bd(M^) is an open (n — l)-cell. This

implies that a¿ is homotopic in Ux — X to ßi with pi, </>< fixed through-

out the homotopy. Since Vr\Ml = h[\nt(Bn-l)X [0, e)], f(Sl)C\Ml

is homotopic in VC\Ml to a subset of Int(5"-1)—y with the homo-

topy fixed throughout on Int(B"-1). Thus, f(Sx) is homotopic in

U—X to a loop in (U—X)f~\Bd(M?) and hence is nullhomotopic in

U—X. Theorem 1 of [2] implies that X is cellular in 2Mn and Lemma

111:5 shows that X is CAB of Mn.

Remark. Theorem 111.6 holds for » = 5 if we replace condition (2)

by condition (2') requiring F to be a cellular subset of Bd(M").
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Lemma III.7. Let X be a closed subset of 2"(1). Then X is CAB of
7"(l)<=>XnBd[7"(l)]= Y is a cellular subset of Bd[2"(l)] and 2X is

cellular in 22B(1)«S\

Proof. The necessity is obvious. Thus, we show the sufficiency.

As usual, 27n(l) = 2?(l)W22\l) joined along their boundaries. We

may assume that Y=y is a point of Bd[2n(l)] since Y is CAB of

27(1). Let /: 22"(l)->22n(l)/2X«5n be the quotient map with

f(2X) =/(y) =p. Now /[Bd(2?(l))] is locally flat in /[22"(1)] except
possibly at p. If «^3,/[Bd(2?(l))] is flat. If w = 3, either f[T¡(l)] or
/[2"(1)] is a closed 3-cell [9]. In either case, we may assume without

loss of generality that/[2"(l)] is a closed «-cell. The completion of

the proof follows as in the proof of Lemma III.5.

Theorem 111.8. Let X be a compact subset of a piecewise-linear 3-

manifold Mz such that X and XC\Bd(M3) = Y are absolute retracts

and such that for some open set 0 of Mz containing X, the pair (0,

0r\Bd(M3)) is embeddable in (P(l), Bd[23(l)]). Then X is CAB of
M3<F$for each open set U of M% containing X, there is an open set V of

M% with XQVQU and each loop in V—X is nullhomotopic in U—X.

Proof. The hypothesis on 0 allows us to assume that il73 = 73(l).

Y is cellular in Bd [23(1) ] since it is a compact absolute retract in the

interior of a 2-manifold. Hence, we assume that Y=y is a point of

Bd[23(l)].
Let U be an open set of 223(1) =23(1)U223(1) «S3 containing 2X

= XiVJXi. We may assume that Z7 is symmetric with respect to 23(1)

and 22(1), and that i7nBd[23(l)] is an open 2-cell. Then by hypoth-

esis and a little care, we obtain an open set V of 2I3(1) such that V

is symmetric with respect to 23(1) and 7|(1), Vi~\Bd[l3(l)] is an

open 2-cell, X< C F< = [VCMf(l) ] C c7< = [ UiMf(l) ], and each loop in
Vi — Xi is nullhomotopic in Ui — Xi.

Let/: S1—*V— 2X. We suppose that/ is simplicial and that/(5')

is in general position with respect to Bd[23(l)]. Then /(51)'^2|(1) is

a finite collection of paths in Vi—X with endpoints in Bd[23(l)]. As

in the proof of Theorem III.6 we join these endpoints with arcs in

(Vi-X)r\Bd[l%(l)] and obtain a homotopy pulling /(S1) into

(U - X) i\ Bd[2f(l)]. Since (U - X) i\ Bd[23(l)] and
(V—X)f~\Bd[lf(l)] are open 2-cells, there is another homotopy pull-

ing /(S1) into (Vi-X)r\Bd[l?(l)] = (V-X)r\Bd[l?(l)] and then,
by hypothesis, it is nullhomotopic in Ui—X. Thus, by Theorem 1' of

[2], 2X is cellular in 223(1), and by Lemma III.7, X is CAB of
23(1) = M3(1).
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Lemma III.9. Let X be a compact subset of a piecewise-linear 3-

manifold M3. Then X is CAB of M3^>XC\Bd(M3) = Y is cellular in
Bd (If3) and 2X is cellular in 2M3.

Proof. As usual, the necessity is obvious. Thus, we show the suffi-

ciency. Let U be an open set of M3 containing X. Then 2 U= UiU U2

is an open set of 2M3 = M\\JMl containing 2X = Xi\JX2. By hypoth-

esis, there is a closed 3-cell B3 such that 2XClnt(.B3)C£3Cc7. By

Theorem 3 of [2], we may assume that B3 is a piecewise-linear 3-cell.

We also suppose that Bd(B3) is in general position with respect to

Bd(Mf). Then Bd(B3)C\Bd(Mf) consists of a finite number of simple
closed curves. We may assume that B3 has been cut down, by remov-

ing inessential simple closed curves on Bd(B3), to a submanifold N3

such that 2XElnt(N3), N3r\Mf = Ni is a cube with handles, and

N3i~\Bd(Mf) =D is a disk with holes. If D is a disk, we are through.

If D is a disk with n holes, we may "cut one of the handles" of either

Ni or N2 to reduce D to a disk with (n — 1) holes. By induction, we ob-

tain a closed 3-cell (B3)' either in Ui or U2 of the required type to

show that either Xi is CAB of M\ or X2 is CAB of M¡.

Theorem III.10. Let Xbea compact 1-dimensional subset of a piece-

wise-linear 3-manifold M3 such that X and XC\Bd(M3) = Y are ab-

solute retracts. Then X is CAB of M3<^>for each open set U of M3 con-

taining X, there is an open set V of M3 such that X EVEU and each

loop in V—X is nullhomotopic in U—X.

Proof. 2X is a compact absolute retract in 2MS. D. R. McMillan

pointed out to the author that some neighborhood of 2X is embed-

dable in R3 since 2X is 1-dimensional. A proof similar to that of

Theorem III.8 shows that 2X is cellular in 2M3. Again, Y is cellular

in Bd(M3) and thus Lemma III.9 implies that X is CAB of M3.

Theorem 111.11. Let X be a compact subset of an i-manifold M{,

¿ = 1,2, such that X and XC\Bd(Mi) = Y are absolute retracts. Then X

is CAB of Mi and hence M'/X « M*.

Proof. The case t = l is trivial. If i = 2, Y is cellular in Bd(ilf2),

2X is cellular in 2M2 and an easy argument completes the proof.

IV. CAB sets in products.

Lemma IV. 1. Let Nn, Mm be n, m manifolds respectively such that

Bd(N»)?*0 and Bd(M*») = 0. Then 2(NnXMm)~(2Nn)XMm.

Proof. 2(NnXMm) consists of two copies of NnXMm joined along
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Bd(N»XMm) = [B(N»)XMm]\J[N"XBd(Mm)],   while   (2N»)XMm
consists of two copies of N"XMm joined along Bd(Nn)XMm.

Theorem IV.2. Let Nn, Mm be piecewise-linear n, m manifolds re-

spectively such that Bd(Nn) 5= 0, Bd(Mm) = 0, and «è 2, m =: 1. Let X

be a compact subset of Nn, Z a compact subset of Mm, and suppose X,

[Xr\Bd(Nn) ] = Y, and Z are absolute retracts. If m+n^,6, then XXZ

is CAB of NnXMm.

Proof. Theorem 8 of [2] implies that YXZ is cellular in Bd(Nn)

XMn = Bd(NnXMm). It also implies that XXZ is cellular in (2Nn)

XMm. Then Lemma IV.l implies that XXZ is cellular in 2(NnXMm).

Hence by Lemma III.5, 1X2 is CAB of NnXMm.

A couple of applications of the corollary to Theorem 8 in [2 ] to-

gether with Lemma 111.7 give the following theorem.

Theorem IV.3. Let X be a compact subset of Dn(l), such that X and

XC\Bd[Dn(l)] are absolute retracts. Then 1=1X0 is CAB of

2>(1)X[-1, 1].

V. CAB arcs. Let a be the arc described in Example 1.3 of [l0].

We suppose that aC73(l) and «nBd[73(l)] = {p}, where p is the

"good" endpoint of a. Then a is the monotone union of subarcs each

of which is cellular in Int[73(l) ] and each of which contains the "bad"

endpoint of a, but a is not CAB of 73(1) since 2a is not cellular in

223(1).

However, going in the other direction we have the following theo-

rem.

Theorem V.l. Let a be an arc CAB of an n-manifold M" and let ß

be a subarc of a. Then the following hold :
(1) ßQBd(Mn), «7=5=>j3 is cellular in Bd(Mn) and hence CAB

of Mn,

(2) ßC\Bd(Mn) is a point (0), n^A^ß is CAB of Mn (cellular

in Int(M-)),

(3) j3nBd(Afn) is a proper subarc of ß, »5=4, 5=>/3 is CAB of Mn.

Proof. Since a is CAB of J7n, we may assume that Jl7" = 7n(l). By

Lemma III.7, anBd[7"(l)] =o- is cellular in Bd^l)]«^»-1 and
2a is cellular in 27n(l)«S\ Also o is CAB of 7n(l), a is cellular in

27B(1), and hence 2(a/a) is cellular in 2(7n(l)/<r) ~2In(l)~Sn. Theo-

rem 6 of [2] together with Lemma III.7 give (1) and (2) immediately

and (3) follows with an additional easy argument.
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