CELLULARITY AT THE BOUNDARY OF A MANIFOLD1

CHARLES GREATHOUSE

I. Introduction and definitions. A closed subset X of an n-manifold M^n will be said to be cellular at the boundary (CAB) of M^n if there is a sequence $\{B_i^n\}$ of closed n-cells in M^n satisfying: $B_i^n \cap [\operatorname{Bd}(M^n)] = B_i^{n-1}$ a closed (n-1)-cell, $B_{i+1}^{n-1} \subset \operatorname{Int}(B_i^{n-1})$, $[B_{i+1}^n \cap \operatorname{Int}(M^n)] \subset \operatorname{Int}[B_i^n \cap \operatorname{Int}(M^n)]$, and $\bigcap_{i=1}^{\infty} B_i^n = X$. Thus, the notion of CAB is the analogue, for subsets intersecting the boundary of a manifold, of the concept of cellularity introduced by Brown in [1].

Theorem II.2 shows that CAB sets behave like points on the boundary of a manifold. With the aid of a theorem of McMillan's [2], we give criteria for a compact absolute retract to be CAB of a piecewise-linear n-manifold for $n \neq 4$. A product theorem for CAB sets is given and with some restrictions on dimensions, we show that subarcs of a CAB arc are either CAB or cellular subsets of the interior of the manifold.

We assume a familiarity with [2], [3], and [4]. \mathbb{R}^n , \mathbb{S}^n denote *n*-space and the *n*-sphere. $\mathbb{D}^n(j)$ is the closed *n*-ball in \mathbb{R}^n with center at the origin and radius j. $\mathbb{I}^n(j) = \mathbb{D}^{n-1}(j) \times [0, j]$. The empty set is denoted by \emptyset .

Let A, B be subsets of an n-manifold M^n and let δ be a positive number. Then $Int(M^n)$, $Bd(M^n)$ denote the interior and boundary of M^n respectively, d(A, B), the distance from A to B, Cl(A), the closure of A in M^n , and $V_{\delta}(A)$, the subset of M^n consisting of points x such that $d(x, A) < \delta$.

Let M^n be an *n*-manifold with nonempty boundary and let X be a subset of M^n such that $X \cap \operatorname{Bd}(M^n) \neq \emptyset$. Then $2M^n$ denotes an *n*-manifold with empty boundary obtained by taking two copies M_1^n , M_2^n of M^n and identifying corresponding boundary points. Similarly, if X_1 , X_2 are the copies of X in M_1^n , M_2^n respectively, then 2X is the subset of $2M^n$ consisting of $X_1 \cup X_2$.

II. The pointlike character of CAB sets.

LEMMA II.1. If X is CAB of an n-manifold M^n , a sequence $\{(B_i^n)'\}$ of closed n-cells may be picked which satisfy (in addition to the necessary

Presented to the Society, November 21, 1964 under the title A criterion for cellularity at the boundary (CAB) of a manifold; received by the editor November 5, 1964.

¹ Research supported by grant NSF-GP 211.

conditions for X to be CAB of M^n) the following: $(B_i^{n-1})'$ is a flat closed (n-1)-cell in $\mathrm{Bd}[(B_i^n)']$, $[(B_i^n)'\cap \mathrm{Int}(M^n)] \approx R^{n-1} \times [0, 1)$, and $\mathrm{Bd}[(B_i^n)'] - \mathrm{Int}[(B_i^{n-1})']$ is bicollared in M^n .

PROOF. Let $\{B_i^n\}$ satisfy the necessary conditions for X to be CAB of M^n . We can pick an (n-1)-cell F_i^{n-1} satisfying: $B_{i+1}^{n-1} \subset \operatorname{Int}(F_i^{n-1}) \subset F_i^{n-1} \subset \operatorname{Int}(B_i^{n-1})$ and $\operatorname{Bd}(F_i^{n-1})$ is bicollared in B_i^{n-1} . Then there is a homeomorphism h_i of B_i^n onto $I^n(1)$ such that $h_i(F_i^{n-1}) = D^{n-1}(1)$. There is an ϵ_i , $0 < \epsilon_i < \frac{1}{2}$, such that $d[h_i(B_{i+1}^{n-1} \cup X), \operatorname{Bd}[I^n(1)] - \operatorname{Int}[D^{n-1}(1)]] > \epsilon_i$. Take $(B_i^n)' = h_i^{-1}[I^n(1-\epsilon_i)]$. Then $\{(B_i^n)'\}$ is the required sequence.

THEOREM II.2. Let X be CAB of an n-manifold M^n and let C^n be a closed n-cell in M^n satisfying $X \subset C^n$, $[X \cap Bd(M^n)] = [X \cap Bd(C^n)]$ $\subset Int[C^n \cap Bd(M^n)]$. Then there is a map h of M^n onto itself such that $h \mid Cl(M^n - C^n) = 1$, $h(C^n) = C^n$, $h(X) = p \in Bd(M^n)$ and $h \mid M^n - X$ is a homeomorphism of $M^n - X$ onto $M^n - \{p\}$. Thus, $M^n/X \approx M^n$.

PROOF. Take a sequence $\{B_i^n\}$ assured by Lemma II.1. We may assume that $B_1^n \subset C^n$ and $[B_1^n \cap \operatorname{Bd}(C^n)] \subset \operatorname{Int}[C^n \cap \operatorname{Bd}(M^n)]$. In the manner of the proof of Theorem 1 of [1], we inductively pick a sequence $\{h_i\}$ of homeomorphisms of M^n onto itself satisfying: $h_1 \mid \operatorname{Cl}(M^n - C^n) = 1$, the diameter of $h_1(B_1^n)$ is less than 1, $h_{i+1} \mid M^n - B_i^n = h_i \mid M^n - B_i^n$, and the diameter of $h_{i+1}(B_{i+1}^n)$ is less than 1/i+1. Then $h = \lim_i h_i$ is the required map.

COROLLARY II.3. Let $\{X_i | i=1, \dots, k\}$ be a finite collection of disjoint subsets of an n-manifold M^n such that each X_i is either cellular in $Int(M^n)$ or CAB of M^n . Then $M^n \approx X$, where X is the decomposition space obtained by identifying X_i to a point p_i , $i=1, \dots, k$.

III. CAB criteria for an absolute retract.

LEMMA III.1 ([5, p. 33]). If A is a closed subspace of a metrizable space X and if both A and X are absolute retracts, then A is a strong deformation retract of X.

LEMMA III.2 (BORSUK [6]). Every locally contractible compact metrizable space of finite dimension is an absolute neighborhood retract.

THEOREM III.3. Let X and Y be finite dimensional (metric) compact absolute retracts and let Y be a closed subset of X. Then X/Y is a compact absolute retract.

PROOF. Obviously, X/Y is compact and finite dimensional. By Theorem 2.2 [7, p. 123], X/Y is a metric space. By Lemma III.1, Y is a strong deformation retract of X. Thus, if f is the quotient map

of X onto X/Y with f(Y) = y, X/Y is contractible to the point y. This implies that X/Y is locally contractible and by Lemma III.2, X/Y is an absolute neighborhood retract. Finally, X/Y is a compact absolute retract since it is a compact contractible absolute neighborhood retract.

Theorem III.3 will be applied to situations where X is a compact absolute retract in a manifold M and $Y = X \cap Bd(M)$ is a compact absolute retract in Bd(M). Then X/Y is a compact absolute retract in M/Y. If Y is CAB of M, $M/Y \approx M$ and we may assume that Y is a point in Bd(M) to simplify arguments. In this case, 2X will be a compact absolute retract in 2M.

LEMMA III.4. Let M^{n-1} be an (n-1)-manifold topologically embedded in the interior of an n-manifold M^n , n>3. Let B^{n-1} be a closed (n-1)-cell in M^{n-1} , $p \in Int(B^{n-1})$, and let B^{n-1} be locally flat in M^n except at p. Then B^{n-1} is also locally flat at p provided it has a one-sided local collar at p.

PROOF. Let B^n be a closed *n*-cell in M^n such that $p \in \operatorname{Int}(B^n)$. B^{n-1} has a one-sided local collar at p, thus, there is a homeomorphism $h \colon I^n(1) \to \operatorname{Int}(B^n)$ such that p = h(0), $h[D^{n-1}(1)] \subset \operatorname{Int}(B^{n-1})$, and $h[I^n(1) - D^{n-1}(1)] \cap M^{n-1} = \emptyset$. Let $S^{n-1}(\frac{1}{2}) = h[\operatorname{Bd}(I^n(\frac{1}{2})]$. Then $S^{n-1}(\frac{1}{2})$ is locally flat in $\operatorname{Int}(B^n) \approx R^n$ except at p. Hence, by the corollary in [8], $S^{n-1}(\frac{1}{2})$ is flat in $\operatorname{Int}(B^n)$. This implies that B^{n-1} is locally flat at p.

LEMMA III.5. Let X be a compact subset of an n-manifold M^n , n > 3. Then X is CAB of $M^n \Leftrightarrow X \cap \text{Bd}(M^n) = Y$ is a cellular subset of $\text{Bd}(M^n)$ and X is cellular in $2M^n$.

PROOF. The necessity follows from the definition of CAB and the fact that $\mathrm{Bd}(M^n)$ is bicollared in $2M^n$. Thus, suppose Y is a cellular subset of $\mathrm{Bd}(M^n)$ and X is cellular in $2M^n$. We consider $X=X_1$ a subset of M_1^n , where $2M^n=M_1^n\cup M_2^n$ joined along their boundaries. Let f be the quotient map of $2M^n$ onto $2M^n/X$ and let f(X)=p. Cellular subsets of the boundary of a manifold are trivially CAB of the manifold since the boundary is collared in the manifold. Therefore, Y is CAB of M_2^n and by Theorem II.2, $f(M_2^n)\approx M_2^n$. Thus, $f[\mathrm{Bd}(M_1^n)]$ is collared in $f(M_2^n)$ and by Lemma III.4, $f[\mathrm{Bd}(M_1^n)]$ is locally flat in $f(2M^n)$ at f(X)=p. Hence, we pick a sequence $\{B_1^n\}$ of closed n-cells in $f(M_1^n)$ satisfying the conditions necessary for p to be CAB of $f(M_1^n)$ and such that $f^{-1}(B_1^n)$ lies in the interior of some closed n-cell in $2M^n$ containing X. Then $\{f^{-1}(B_1^n)\}$ is a sequence of closed n-cells in M_1^n satisfying the conditions necessary for X to be CAB of M_1^n .

THEOREM III.6. Let X be a compact subset of a piecewise-linear n-manifold M^n , n > 5, such that X and $X \cap Bd(M^n) = Y$ are absolute retracts. Then X is CAB of $M^n \Leftrightarrow$ for each open set U of M^n containing X, there is an open set V of M^n such that $X \subset V \subset U$ and: (1) each loop in V - X is homotopic in U - X to a loop in $Bd(M^n)$ and (2) each loop in $(V - X) \cap Bd(M^n)$ is nullhomotopic in $(U - X) \cap Bd(M^n)$.

PROOF. The necessity is obvious in view of Lemma II.1. Thus, we show the sufficiency. We will do this by showing that Y is cellular in $\mathrm{Bd}(M^n)$, X is cellular in $2M^n$, and applying Lemma III.5. We consider $X = X_1$ a subset of M_1^n , where $2M^n = M_1^n \cup M_2^n$ joined along their boundaries. Condition (2) together with Theorem 1 of [2] imply that Y is cellular in $\mathrm{Bd}(M_1^n)$ and hence simultaneously CAB of M_1^n and M_2^n . Theorem III.3 shows that X/Y is a compact absolute retract. Thus, we may assume that Y = y is a point in $\mathrm{Bd}(M_1^n)$.

Let U be an open set in $2M^n$ containing X. We may assume that $U \cap \operatorname{Bd}(M_i^n)$ is an open (n-1)-cell since Y = y is a point. Let $U_1 = U \cap M_1^n$. Then U_1 is an open set in M_1^n containing X. By hypothesis, there is a set V_1 open in M_1^n such that $X \subset V_1 \subset U_1$ and each loop in $V_1 - X$ is homotopic in $U_1 - X$ to a loop in $\operatorname{Bd}(M_i^n)$. We may also assume that $V_1 \cap \operatorname{Bd}(M_i^n)$ is an open (n-1)-cell whose closure B^{n-1} is a closed (n-1)-cell contained in $U_1 \cap \operatorname{Bd}(M_i^n)$. There is a positive number ϵ and a homeomorphism $h: B^{n-1} \times [0, \epsilon) \to U \cap M_2^n$ such that $h \mid B^{n-1} \times 0$ is the inclusion map and $h \mid B^{n-1} \times (0, \epsilon) \mid \subset \operatorname{Int}(M_2^n)$. Let $V = V_1 \cup h \mid \operatorname{Int}(B^{n-1}) \times [0, \epsilon) \mid$. We will show that any loop in V - X is nullhomotopic in U - X.

Let $f: S^1 \rightarrow V - X$. We assume that f is simplicial and $f(S^1)$ is in general position with respect to $\operatorname{Bd}(M_i^n)$. If $f(S^1) \cap M_1^n = \emptyset$, the result follows trivially. Thus, suppose $f(S^1) \cap M_1^n \neq \emptyset$. Then $f(S^1) \cap M_1^n$ consists of a finite number of paths in $V_1 - X$ with endpoints in $\operatorname{Bd}(M_i^n)$. Let α_i be one such path with endpoints p_i , ϕ_i . Then p_i , ϕ_i can be joined by an $\operatorname{arc} \beta_i$ in $(V_1 - X) \cap \operatorname{Bd}(M_i^n)$. If $l_i = \alpha_i \cup \beta_i$, by hypothesis, l_i is homotopic in $U_1 - X$ to a loop in $\operatorname{Bd}(M_i^n)$ and hence is null-homotopic in $U_1 - X$ since $U_1 \cap \operatorname{Bd}(M_i^n)$ is an open (n-1)-cell. This implies that α_i is homotopic in $U_1 - X$ to β_i with p_i , ϕ_i fixed throughout the homotopy. Since $V \cap M_2^n = h[\operatorname{Int}(B^{n-1}) \times [0, \epsilon], f(S^1) \cap M_2^n$ is homotopic in $V \cap M_2^n$ to a subset of $\operatorname{Int}(B^{n-1}) - y$ with the homotopy fixed throughout on $\operatorname{Int}(B^{n-1})$. Thus, $f(S^1)$ is homotopic in U - X to a loop in $(U - X) \cap \operatorname{Bd}(M_i^n)$ and hence is nullhomotopic in U - X. Theorem 1 of [2] implies that X is cellular in $2M^n$ and Lemma III.5 shows that X is CAB of M^n .

REMARK. Theorem III.6 holds for n=5 if we replace condition (2) by condition (2') requiring Y to be a cellular subset of $Bd(M^n)$.

LEMMA III.7. Let X be a closed subset of $I^n(1)$. Then X is CAB of $I^n(1) \Leftrightarrow X \cap \text{Bd}[I^n(1)] = Y$ is a cellular subset of $\text{Bd}[I^n(1)]$ and 2X is cellular in $2I^n(1) \approx S^n$.

PROOF. The necessity is obvious. Thus, we show the sufficiency. As usual, $2I^n(1) = I_1^n(1) \cup I_2^n(1)$ joined along their boundaries. We may assume that Y = y is a point of $Bd[I_t^n(1)]$ since Y is CAB of $I_t^n(1)$. Let $f: 2I^n(1) \rightarrow 2I^n(1)/2X \approx S^n$ be the quotient map with f(2X) = f(y) = p. Now $f[Bd(I_t^n(1))]$ is locally flat in $f[2I^n(1)]$ except possibly at p. If $n \neq 3$, $f[Bd(I_t^n(1))]$ is flat. If n = 3, either $f[I_1^n(1)]$ or $f[I_2^n(1)]$ is a closed 3-cell [9]. In either case, we may assume without loss of generality that $f[I_1^n(1)]$ is a closed n-cell. The completion of the proof follows as in the proof of Lemma III.5.

THEOREM III.8. Let X be a compact subset of a piecewise-linear 3-manifold M^3 such that X and $X \cap Bd(M^3) = Y$ are absolute retracts and such that for some open set 0 of M^3 containing X, the pair (0, $0 \cap Bd(M^3)$) is embeddable in ($I^3(1)$, $Bd[I^3(1)]$). Then X is CAB of $M^3 \Leftrightarrow$ for each open set U of M^3 containing X, there is an open set V of M^3 with $X \subset V \subset U$ and each loop in V - X is nullhomotopic in U - X.

PROOF. The hypothesis on 0 allows us to assume that $M^3 = I^3(1)$. Y is cellular in $Bd[I^3(1)]$ since it is a compact absolute retract in the interior of a 2-manifold. Hence, we assume that Y = y is a point of $Bd[I^3(1)]$.

Let U be an open set of $2I^3(1) = I_1^3(1) \cup I_2^3(1) \approx S^3$ containing $2X = X_1 \cup X_2$. We may assume that U is symmetric with respect to $I_1^3(1)$ and $I_2^3(1)$, and that $U \cap \text{Bd}[I_i^3(1)]$ is an open 2-cell. Then by hypothesis and a little care, we obtain an open set V of $2I^3(1)$ such that V is symmetric with respect to $I_1^3(1)$ and $I_2^3(1)$, $V \cap \text{Bd}[I_i^3(1)]$ is an open 2-cell, $X_i \subset V_i = [V \cap I_i^3(1)] \subset U_i = [U \cap I_i^3(1)]$, and each loop in $V_i - X_i$ is nullhomotopic in $U_i - X_i$.

Let $f: S^1 \rightarrow V - 2X$. We suppose that f is simplicial and that $f(S^1)$ is in general position with respect to $\operatorname{Bd}[I_i^3(1)]$. Then $f(S^1) \cap I_i^3(1)$ is a finite collection of paths in $V_i - X$ with endpoints in $\operatorname{Bd}[I_i^3(1)]$. As in the proof of Theorem III.6 we join these endpoints with arcs in $(V_i - X) \cap \operatorname{Bd}[I_i^3(1)]$ and obtain a homotopy pulling $f(S^1)$ into $(U - X) \cap \operatorname{Bd}[I_i^3(1)]$. Since $(U - X) \cap \operatorname{Bd}[I_i^3(1)]$ and $(V - X) \cap \operatorname{Bd}[I_i^3(1)]$ are open 2-cells, there is another homotopy pulling $f(S^1)$ into $(V_1 - X) \cap \operatorname{Bd}[I_i^3(1)] = (V - X) \cap \operatorname{Bd}[I_i^3(1)]$ and then, by hypothesis, it is nullhomotopic in $U_1 - X$. Thus, by Theorem 1' of [2], 2X is cellular in $2I^3(1)$, and by Lemma III.7, X is CAB of $I^3(1) = M^3(1)$.

LEMMA III.9. Let X be a compact subset of a piecewise-linear 3-manifold M^3 . Then X is CAB of $M^3 \Leftrightarrow X \cap Bd(M^3) = Y$ is cellular in $Bd(M^3)$ and 2X is cellular in $2M^3$.

PROOF. As usual, the necessity is obvious. Thus, we show the sufficiency. Let U be an open set of M^3 containing X. Then $2U = U_1 \cup U_2$ is an open set of $2M^3 = M_1^3 \cup M_2^3$ containing $2X = X_1 \cup X_2$. By hypothesis, there is a closed 3-cell B^3 such that $2X \subset \text{Int}(B^3) \subset B^3 \subset U$. By Theorem 3 of [2], we may assume that B^3 is a piecewise-linear 3-cell. We also suppose that $Bd(B^3)$ is in general position with respect to $Bd(M_i^3)$. Then $Bd(B^3) \cap Bd(M_i^3)$ consists of a finite number of simple closed curves. We may assume that B^3 has been cut down, by removing inessential simple closed curves on $Bd(B^3)$, to a submanifold N^3 such that $2X \subset \text{Int}(N^3)$, $N^3 \cap M_i^3 = N_i$ is a cube with handles, and $N^3 \cap Bd(M_i^3) = D$ is a disk with holes. If D is a disk, we are through. If D is a disk with n holes, we may "cut one of the handles" of either N_1 or N_2 to reduce D to a disk with (n-1) holes. By induction, we obtain a closed 3-cell $(B^3)'$ either in U_1 or U_2 of the required type to show that either X_1 is CAB of M_1^3 or X_2 is CAB of M_2^3 .

THEOREM III.10. Let X be a compact 1-dimensional subset of a piecewise-linear 3-manifold M^3 such that X and $X \cap \operatorname{Bd}(M^3) = Y$ are absolute retracts. Then X is CAB of $M^3 \Leftrightarrow$ for each open set U of M^3 containing X, there is an open set V of M^3 such that $X \subset V \subset U$ and each loop in V - X is nullhomotopic in U - X.

PROOF. 2X is a compact absolute retract in $2M^3$. D. R. McMillan pointed out to the author that some neighborhood of 2X is embeddable in R^3 since 2X is 1-dimensional. A proof similar to that of Theorem III.8 shows that 2X is cellular in $2M^3$. Again, Y is cellular in $Bd(M^3)$ and thus Lemma III.9 implies that X is CAB of M^3 .

THEOREM III.11. Let X be a compact subset of an i-manifold M^i , i=1, 2, such that X and $X \cap Bd(M^i) = Y$ are absolute retracts. Then X is CAB of M^i and hence $M^i/X \approx M^i$.

PROOF. The case i=1 is trivial. If i=2, Y is cellular in $Bd(M^2)$, 2X is cellular in $2M^2$ and an easy argument completes the proof.

IV. CAB sets in products.

LEMMA IV.1. Let N^n , M^m be n, m manifolds respectively such that $Bd(N^n) \neq \emptyset$ and $Bd(M^m) = \emptyset$. Then $2(N^n \times M^m) \approx (2N^n) \times M^m$.

PROOF. $2(N^n \times M^m)$ consists of two copies of $N^n \times M^m$ joined along

 $\operatorname{Bd}(N^n \times M^m) = [B(N^n) \times M^m] \cup [N^n \times \operatorname{Bd}(M^m)], \text{ while } (2N^n) \times M^m \text{ consists of two copies of } N^n \times M^m \text{ joined along } \operatorname{Bd}(N^n) \times M^m.$

THEOREM IV.2. Let N^n , M^m be piecewise-linear n, m manifolds respectively such that $Bd(N^n) \neq \emptyset$, $Bd(M^m) = \emptyset$, and $n \ge 2$, $m \ge 1$. Let X be a compact subset of N^n , Z a compact subset of M^m , and suppose X, $[X \cap Bd(N^n)] = Y$, and Z are absolute retracts. If $m+n \ge 6$, then $X \times Z$ is CAB of $N^n \times M^m$.

PROOF. Theorem 8 of [2] implies that $Y \times Z$ is cellular in $Bd(N^n) \times M^m = Bd(N^n \times M^m)$. It also implies that $X \times Z$ is cellular in $(2N^n) \times M^m$. Then Lemma IV.1 implies that $X \times Z$ is cellular in $2(N^n \times M^m)$. Hence by Lemma III.5, $X \times Z$ is CAB of $N^n \times M^m$.

A couple of applications of the corollary to Theorem 8 in [2] together with Lemma III.7 give the following theorem.

THEOREM IV.3. Let X be a compact subset of $D^n(1)$, such that X and $X \cap Bd[D^n(1)]$ are absolute retracts. Then $X = X \times 0$ is CAB of $D^n(1) \times [-1, 1]$.

V. CAB arcs. Let α be the arc described in Example 1.3 of [10]. We suppose that $\alpha \subset I^3(1)$ and $\alpha \cap \text{Bd}[I^3(1)] = \{p\}$, where p is the "good" endpoint of α . Then α is the monotone union of subarcs each of which is cellular in $\text{Int}[I^3(1)]$ and each of which contains the "bad" endpoint of α , but α is not CAB of $I^3(1)$ since 2α is not cellular in $2I^3(1)$.

However, going in the other direction we have the following theorem.

THEOREM V.1. Let α be an arc CAB of an n-manifold M^n and let β be a subarc of α . Then the following hold:

- (1) $\beta \subset Bd(M^n)$, $n \neq 5 \Rightarrow \beta$ is cellular in $Bd(M^n)$ and hence CAB of M^n ,
- (2) $\beta \cap \text{Bd}(M^n)$ is a point (\emptyset) , $n \neq 4 \Rightarrow \beta$ is CAB of M^n (cellular in $\text{Int}(M^n)$),
 - (3) $\beta \cap Bd(M^n)$ is a proper subarc of β , $n \neq 4$, $5 \Rightarrow \beta$ is CAB of M^n .

PROOF. Since α is CAB of M^n , we may assume that $M^n = I^n(1)$. By Lemma III.7, $\alpha \cap \text{Bd}[I^n(1)] = \sigma$ is cellular in $\text{Bd}[I^n(1)] \approx S^{n-1}$ and 2α is cellular in $2I^n(1) \approx S^n$. Also σ is CAB of $I^n(1)$, σ is cellular in $2I^n(1)$, and hence $2(\alpha/\sigma)$ is cellular in $2(I^n(1)/\sigma) \approx 2I^n(1) \approx S^n$. Theorem 6 of [2] together with Lemma III.7 give (1) and (2) immediately and (3) follows with an additional easy argument.

REFERENCES

- 1. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.
- 2. D. R. McMillan, Jr., A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.
- 3. J. R. Stallings, The piecewise-linear structure of euclidean space, Proc. Cambridge Philos. Soc. 58 (1962), 481-488.
- 4. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962), 331-341.
 - 5. S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
- 6. K. Borsuk, Über eine Klasse von lokal zusammenhangenden Räumen, Fund. Math. 19 (1932), 220-240.
- 7. G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ. Vol. 28, Amer. Math. Soc., Providence, R. I., 1942.
- 8. J. C. Cantrell, Almost locally flat embeddings of Sⁿ⁻¹ in Sⁿ, Bull. Amer. Math. Soc. 69 (1963), 716-718.
- 9. O. G. Harrold, Jr. and E. E. Moise, Almost locally polyhedral spheres, Ann. of Math. (2) 57 (1953), 575-578.
- 10. E. Artin and R. H. Fox, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49 (1948), 979-990.

THE University of Tennessee and Vanderbilt University