
A NOTE ON THE TWO CARDINAL PROBLEM

C. C. CHANG1

In this note we prove a theorem concerning the two cardinal prob-

lem (see [l], [4], [6], [7] for reference and for some of the standard

notation); this result has been referred to in [6, p. 311] and [7,

(3.7) ]. The problem, first proposed by Vaught, is as follows. Let T be

a first-order theory and let U be a unary predicate symbol in the lan-

guage of T. T is said to admit the pair a, ß of cardinals if there exists

a model M=(A, U, S, ■ • ■ ) of T such that \A\ =a and | U\ =ß.
Suppose T admits a pair a, ß where a>ß^w. Then what other pairs

of cardinals 7, S must T admit? The following theorem gives a partial

answer.

Theorem. Let Tbea theory in a countable first-order language L with

identity. Assume the generalized continuum hypothesis. If T admits a

pair a, ß where a>ß^o>, then T admits all pairs 5+, Ô where Ô is a regu-

lar infinite cardinal.

Proof. We first note that in the case 5=w the theorem is already

known [4, Theorem 6.2], and in fact this particular case can be

proved without assuming the generalized continuum hypothesis.

Henceforth we assume that 5 is a regular infinite cardinal greater

than «.

Let us suppose that L has, in addition to the unary predicate sym-

bol U, some other predicate symbols S, • • • , and, for the sake of

definiteness, let us assume that S is a ternary predicate symbol. Let

(A, U,S,---)

be a model of T such that | A \ =a and | U\ =ß, where a>ß^.u. Let

R be a new binary relation over A such that RQU2 and R indexes all

the finite subsets of U. That is,

(1)   for any «i, • • • , u„Q U, there exists a uQU such that for

all tQ U,

R(u, t) if and only if t Q {ui, ■ ■ ■ , un].

It is always possible to construct such a relation R as U is infinite.
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Let L\ be the first-order language obtained from L by adding the

new binary predicate symbol R. The model

(A, U,R,S, •••>

is then a model for Li. In view of the downward Löwenheim-Skolem

theorem as formulated in [5], and since Li is still countable, there

exists a subset BQA such that

UEB, \B\=ß,    and

(B,U,R,Sr\B\- ■ ■ ) -< (A, U,R,S,--- ).

Let L2 he the first-order language obtained from Li by adding the

new unary predicate symbol B. Thus

(A, B, U,R,S,---)

is a model for L2. Let T' be the complete theory given by

(.4, B, U, R, S, • • • ). We note in passing that, by (1), V contains in

particular all closures of formulas of the form

U(zi) A • • • A U(zm) A «Kzi) A ■ • • A <KO

-^(3y)(R(y, Sl) A • • • A R(y, «.) A (Vt)(R (y, t) -*<t>(l))),

where <p is an arbitrary formula of L2 which may contain other free

variables.

Clearly T' is cohsistent and has an infinite model. It is well known

that, assuming the generalized continuum hypothesis, for each regu-

lar infinite cardinal 8 >w, V has a 8-saturated model (see, for example,

[4], [3] for some properties of saturated models)

No = (Ao, Bo, Uo, Ro, So, • • • )

of power 8. By (2), both B0 and Uo must be infinite, and since No is

S-saturated, it follows that |730| =| U0\ =8. Furthermore, there are

enough sentences in V to insure that the model (in Li)

Ni = (Bo, Uo, Ro, So H (Bo)\ • • • )

is a proper elementary submodel of the model (in Li)

Mo = (^o, Uo, Ro, So, ■ • ■ )■

In particular, we have Ni = M0. More significantly, since A^o is 8-

saturated, both Ni and Af0 are also S-saturated. Since Ni and Mo

have the same power 8, by the uniqueness of saturated models, we

have Ni-=M0. From these facts we can draw the following funda-

mental result:
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(4) If M' = (A', U', R', S', ■ ■ ■ ) is any model which can be ele-

mentarily embedded into M¡¡ by an isomorphic embedding

which maps U' onto U0, then M' has a proper elementary

extension M" = (A", U", R", S", ■ ■ ■ ) such that

U' = U",       R' = R",       and       M" ^ M0.

We shall define by transfinite induction a sequence of models,

Mo = (A0, Uo, Ro, So, ■■•),■■■, M, = (A„ U0, R0, S„ ■■•),■■■ ,

for every ordinal v < {+,

satisfying the following : for every v < ö+ we have

(5) Mo=M\ for every ordinal \¿v, and MK is a proper ele-

mentary submodel of M\ for all ordinals k, X such that

K<\¿V.

Let p be an ordinal such that 0<p<8+. Assume that M, has been

defined for all v<p and that (5) holds for all v<p. If p=v+ for some

v, then by (4) we can easily find a model Mß = (Aß, Uo, Ro, Sß, • • • )

such that

Mo=M? and M, is a proper elementary submodel of Mh.

Hence (5) will hold with p in the place of v.

Suppose that p is a limit ordinal. Let

M' = (A', Uo, Ro, S', • • • ) =   U Afx.

Clearly M' is a proper elementary extension of each M\, \</i, and

1^4'j =ô. We prove that

(6) M' is elementarily embeddable into Mo in such a way that

Uo is mapped onto î/0.

The proof of (6) will take some time.

Let aQ(Uo)s and a'Q(A'Y be enumerations of f70 and A', respec-

tively. In what follows the letter r¡ shall range over limit ordinals in-

cluding 0. We shall construct by a second transfinite induction two

sequences bQ(A0)s and b'Q(A'Y such that for every v<8,

(7) (Mo,b\v+l) = (M',b'\v+l);

(8) if v = r¡+2k with k<u>, then b! =a,'+*>    and

ii v = r¡+2k + l with k<u, then è, = a,+Jt.

Let X < ô and let us suppose that the sequences b and b' have been
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defined for each v <X and that (7) and (8) hold for each v <X. From

(7), we immediately have

(9) (Mo,b\\) = (M',b'\\).

Assume that \ = n+2k with k<o). We define b\ =a,'+*. Let C be the

set of all formulas <p(v0) in the language of (M', b' ] X) with at most

one free variable v0 such that

(M',b'\\)£<i>(b¿).

C is finitely satisfiable in (M', b' [X). Hence, by (9), C is finitely

satisfiable in (M0, b fX). Since Mo is S-saturated and \c\ <8, we

have C is simultaneously satisfiable in (Mo, b \ X) by some element

eEA0. We define b\ = e. It follows that

and

(Mo,b\\ + l) = (M',b'\\ + l).

Hence (7) and (8) hold with X in place of v.

Assume that X = n+2k+i with k<u. We define b\=an+k. Let D be

the set of all formulas <¡>(vo) in the language of (Mo, b } X) (the same

language as that of (M', V \ X)) with at most one free variable vo

such that

(Mo, b\\)\= <j>(h).

Notice that the formula U(v0) ED. Dis finitely satisfiable in (Mo, b f X),

so by (9), D is finitely satisfiable in (M', b' \ X). We shall prove that

(10) D is simultaneously satisfiable in (M', b' f X) by some ele-

ment eE Uo-

Let Sa(D) denote the set of all finite subsets of D. Notice that | SU(D) \

<S. Consider a set dESa(D). Let <pd(vo) be the conjunction of all the

formulas in d\J { U(v0)}. It follows that

(M',b' \\) t= (3vo)<t>d(vo).

Remember that <f>d is a formula in the language of (M1, b' \\), hence

there are a finite number of the terms of the sequence b' \\, say

&»n • • * i or%, such that

M' t (3»o)«i>d(»o, bn, ■ • ■ , b,n),

where ^(^o, Vi, • • • , vn) is some formula of L\. Let v* <u he an ordinal

such that
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i,„ • • • , b,n Q A,d.

Then since M,d~<M', we have

M,d t= (ai>o)0d(»o, bn, ■ ■ • , b,n).

We can now select, for each dQSa(D), the elements b,v • • • , ¿,„, the

ordinal v¿, and an element e¿Q Uo such that

(11) M,d 1= 4>i(ed, bn, • • • , b,n).

Notice that if dQd'QSu(D), then

h ^d'W-x^dÍPo)

and since ed>Q UoQA,d,

M,d t= <Me<¡'> i,lf • • • , ô,„).

Again let dQSu(D) and consider the set of conditions

Ed= {R(vo, edr):dQd'QS„(D)}

U{Vt(R(vo, t)->d>d(t, *rH • • -,&J)}.

Using the fact that M,d is a model of T', by (3), we see that every

finite subset of Ed is satisfiable in M,d. Since M;d is 5-sa tura ted and

\Ed\ <ô, we have that Ed is simultaneously satisfiable in M,d. This

means we can select for each dQSu(D) an element/¿G Uo such that

(12) MH 1= V/(R(/¿, i) -» fc(í, 6n, • ■ • , b J),

and

(13) M,d t= 2*(/d, «a»)    for all d' such that ¿C¿'£ 5.(2?).

Consider now a third set of conditions,

F= {R(fa,vo):dQSu(D)}.

UR(fdltVo), • • • ,R(fdm,v0)QF, then letting e' = e(dlU...ud„,), we have

by (13),

M,d  t 2?(/d<, e')       for all i such that 1 ¿ i ¿ m.

Since all the elements involved belong to Uo and hence to A0, we have

Mo t= 2*(/dl, e') A • • • A 2*(/d„, •).

So F is finitely satisfiable in Mo. Since ili"0 is 5-saturated and \f\ <b,

we have

(14) F is simultaneously satisfiable in M0 by some element
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eE Uo.

It remains to prove (10). It is sufficient to show that

(M', b' T X) \= <pd(e)       for all d E Sa(D).

So, let dESa(D). By (14) we have

Mo t= R(fd, e),

and, since Mo-<M,d,

Mu t R(fd, e).

By (12), we have

Mvi t= <pd(e, b,v • • • , b,J,

and, since M,d-<M',

M' t Me, b,v ■ ■ ■ , bj.

This means (M', b' f X) ]=<pd(e), and (10) is proved. We define b{ =e.
It is now immediate that conditions (7) and (8) again hold with X in

place of v.

This completes the second transfinite induction and (7) and (8)

hold for all v<b. It follows that

(Mo, b) s (M', V),
the range of b' is A', and
the range of b includes Uo-

Let h be the mapping

h:b!^>b,       for all v< 6.

It is a simple matter to verify that h is a one-to-one elementary em-

bedding of M' into Mo such that Uo is mapped onto Uo- So (6) has

been proved. Using (6) and (4), we can again find a model M„

= (A„ Uo, Ro, S?, • ■ ■ ) such that (5) holds with /x in place of v.

This completes our original transfinite induction and (5) now holds

for every v<h+.

Let ili=U,<j+ Mt. It is clear that M is a model of V of power 8+
with the set Uo of power 8. Throwing away the superfluous relation

.Ro, the resulting model is a model of T. Hence T admits 8+, S and the

theorem is proved.

Remarks. (1) The restriction to countable theories T is not neces-

sary. We can establish, again assuming the generalized continuum

hypothesis, that: If T has k^w symbols and T admits a>ßgzu, then

T admits every pair of cardinals 8+, 8 where 8 is a regular infinite
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cardinal greater than k. This result can be proved on either one of the

following two ways. One can use the fact that there exist 8-saturated

models of power 5 in any theory T with k symbols and with an in-

finite model, provided that 5 is regular infinite and greater than k.

The argument then parallels the argument given in the theorem.

One can also use the fact that, using the theorem, every countable

subtheory of T will admit the pair o+, 5 for a regular 8. If 6>k, then

by an easy ultraproduct argument (see [l], for instance) we can

show that T admits the pair ô+, 8. Curiously, neither one of the above

arguments will prove the very first case, namely, T admits k+, k if k

is itself regular. Recently, by using the fact that the proof of our

theorem involves saturated models, Vaught has shown (private com-

munication, unpublished) that the missing case can be proved. One

intriguing problem of the same type remains open. Suppose T has

k++ symbols and T admits k+, k. Then must T admit k++, k+?

(2) As the reader can see, the proof of the theorem involves the

construction of a tower of models

M o, • • • , M„ • • •       for v < S+,

with the fixed set Uo. This is the basic idea used by Vaught in his

first proof for the case 5=co [4]. The whole trick, and indeed the only

trick, of our proof is to show that the process can be continued at the

limit ordinals. The introduction of the binary relation R which in-

dexes the finite sets of U is the key to the argument. The trick seems

to break down if ô is a singular cardinal and M0 is taken to be a

special model of power ô (in the sense of [4]). Hence, it is still not

known if T must admit all pairs ô+, 5 if T admits some pair a, ß where

a>ß^w.

(3) The question also remains open whether this trick, or some

similar device, will enable us to show that if T admits a, ß where

a>ß+ and /3^co, then T must admit all pairs S++, 5 where 5 is an

infinite regular cardinal. By a simple observation this last result, if

provable, surely must require the generalized continuum hypothesis.

This is because it follows from the work of Cohen [2 ] that it is con-

sistent to assume that 2<"=o>2 and, say, 2^=a%. Hence, one can easily

construct a theory T which admits w2, w, but which does not admit

W4, w2. This observation does not seem to show that the generalized

continuum hypothesis is necessary for our theorem.
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A REMARK ON WIENER'S TAUBERIAN THEOREM

M. KAC

A recent note by Levinson [l ] made it seem worthwhile to point

out that a weaker version of the Tauberian theorem can be proved

in a few lines which is, however, strong enough to provide a proof of

the prime number theorem.

Let K(x)EL( — œ, co ) and assume that its Fourier transform obeys

the standard condition

/OO

K(x)«P> dx
-.o   W

?± 0   f or all - 00 < £ < ».

One version of Wiener's Tauberian theorem is the assertion that if

m(y) is a bounded measurable function such that for almost all x,

(2) I    K(x - y)m(y) dy = 0
•*-00

then m(y) =0 almost everywhere.

The weaker version of the Tauberian theorem is obtained by add-

ing an extra requirement on the function K(x), namely that

(3) x2K(x) E L(-00, oo).
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