HOMEOMORPHIC CONJUGACY OF AUTOMORPHISMS ON THE TORUS¹

R. L. ADLER AND R. PALAIS

Introduction. Let γ be a continuous map of the n-dimensional torus $T^n = R^n/Z^n$ into itself where R^n is an n-dimensional real Euclidean space and Z^n is the subgroup of R^n with integral coordinates. Let $\pi\colon R^n \to T^n$ denote the universal covering map. There is a unique $c = (c_1, \cdots, c_n) \in R^n$ with $0 \le c_i < 1$, $i = 1, \cdots, n$, such that $\pi(c) = \gamma(0)$ and a unique continuous map $F \colon R^n \to R^n$ with F(0) = c which is a "lifting" of γ , i.e., which satisfies $\pi F = \gamma \pi$. If we put G(x) = F(x) - c, $x \in R^n$, then $G \mid Z^n$ is a homomorphism of Z^n into itself and therefore extends uniquely to a linear map $L \colon R^n \to R^n$. In fact making the canonical identification of Z^n with the fundamental group $\pi_1(T^n)$ of T^n , $G \mid Z^n$ is just the homomorphism of $\pi_1(T^n)$ induced by γ . It follows that if γ is a homeomorphism then $G \mid Z^n$ is an automorphism of Z^n hence $L \in SL(n, Z)$, the group of linear automorphisms of Z^n whose matrices are unimodular, i.e., have determinant ± 1 and integer entries.

We next note that

$$(1) F(x) = L(x) + P(x) + c$$

where $P: \mathbb{R}^n \to \mathbb{R}^n$ is a continuous periodic map (i.e., $P(x+\nu) = P(x)$, $x \in \mathbb{R}^n$, $\nu \in \mathbb{Z}^n$) satisfying P(0) = 0. This fact is established by considering P(x) = F(x) - L(x) - c. Clearly P(0) = 0. In view of the fact that $L\nu \in \mathbb{Z}^n$ whenever $\nu \in \mathbb{Z}^n$ we have $\pi(P(x+\nu) - P(x)) = \pi(F(x+\nu) - F(x) - L\nu) = \gamma(\pi x + \pi \nu) - \gamma(\pi x) - \pi L\nu = \gamma(\pi x) - \gamma(\pi x) = 0$; consequently $P(x+\nu) - P(x)$ is always in \mathbb{Z}^n . Since \mathbb{R}^n is connected and \mathbb{Z}^n is discrete $P(x+\nu) - P(x)$ is (for ν fixed) independent of x. Thus $P(x+\nu) - P(x) = P(0+\nu) - P(0) = P(\nu) = F(\nu) - L\nu - c = G(\nu) - L\nu$ which is zero by definition $L \mid \mathbb{Z}^n = G \mid \mathbb{Z}^n$. We shall call L the linear part, P the periodic part, and c the constant part of the lifting F and when necessary place subscripts on these symbols to indicate the mapping on T^n from which they came.

The linear, periodic, and constant part of a lifting are unique; for let L', P', c', be other ones. F(x) = L(x) + P(x) + c = L'(x) + P'(x) + c', yields L(x) - L'(x) = P(x) - P'(x) + c - c'. The right-hand side of the

Received by the editors November 16, 1964.

¹ It has come to the attention of the authors that the following overlaps the present work: D. Z. Arov, *Topological similitude of automorphisms and translations of compact commutative groups*, Uspehi Mat. Nauk 18 (1963), no. 5 (113), 133-138. (Russian)

last relation is linear while the left is periodic. This can only occur if L-L'=0. Then since P(0)=P'(0)=0, it follows that c=c' and P=P'.

If γ is a continuous automorphism of T^n , then F_{γ} is linear; thus its periodic and constant parts vanish so that $F_{\gamma} = L_{\gamma}$. Also every $L \in SL(n, Z)$ is the lifting of a continuous automorphism on T^n . The correspondence $\gamma \to L_{\gamma}$ is an isomorphism of the group $Aut(T^n)$ with SL(n, Z). More generally the mapping $\gamma \to L_{\gamma}$ is a homomorphism of the group $Homeo(T^n)$ onto SL(n, Z). We shall prove this by showing that $L_{\alpha\beta} = L_{\alpha}L_{\beta}$ for any two homeomorphisms α and β of T^n onto itself. By uniqueness of lifting

$$F_{\alpha\beta} = F_{\alpha}F_{\beta}.$$

On one hand,

(3)
$$F_{\alpha\beta}(x) = L_{\alpha\beta}(x) + P_{\alpha\beta}(x) + c_{\alpha\beta};$$

on the other hand, using (1) and adding and subtracting $P_{\alpha}(c_{\beta})$,

(4)
$$F_{\alpha}F_{\beta}(x) = L_{\alpha}L_{\beta}(x) + \left[L_{\alpha}P_{\beta}(x) + P_{\alpha}(L_{\beta}(x) + P_{\beta}(x) + c_{\beta}) - P_{\alpha}(c_{\beta})\right] + L_{\alpha}(c_{\beta}) + P_{\alpha}(c_{\beta}) + c_{\alpha}.$$

Because $L_{\beta}Z^{n}\subseteq Z^{n}$ the term in the brackets is periodic. This term vanishes when x=0 so that it is a periodic part of the lifting $F_{\alpha\beta}$. From the uniqueness of the various parts of a lifting

$$(5) L_{\alpha\beta} = L_{\alpha}L_{\beta},$$

(6)
$$P_{\alpha\beta}(x) = L_{\alpha}P_{\beta}(x) + P_{\alpha}(L_{\beta}(x) + P_{\beta}(x) + c_{\beta}) - P_{\alpha}(c_{\beta}),$$

(7)
$$c_{\alpha\beta} = L_{\alpha}(c_{\beta}) + P_{\alpha}(c_{\beta}) + c_{\alpha}.$$

Finally if γ is a continuous automorphism of T^n , it preserves Haar measure on T^n and to such transformations we can apply the notions of ergodic theory [1].

THEOREM. If α and β are continuous automorphisms of T^n such that

$$\gamma \alpha \gamma^{-1} = \beta$$

where γ is a homeomorphism of T^n onto itself then

- (i) $L_{\gamma}L_{\alpha}L_{\gamma}^{-1}=L_{\beta}$ (α and β are conjugate elements in the group of measure preserving transformations on T^{n}).
 - (ii) c_{γ} is a fixed point of L_{β} ($\gamma(0)$ is a fixed point of β).
- (iii) If α is ergodic then $P_{\gamma} = 0$ (γ is a continuous automorphism of T^n composed with a rotation. The rotation is by a fixed point of β and the continuous automorphism satisfies the conjugacy relation between α and β).

PROOF. Relation (i) follows immediately from (5). From (7)

$$c_{\gamma\alpha} = L_{\gamma}(c_{\alpha}) + P_{\gamma}(c_{\alpha}) + c_{\gamma}$$

and

$$c_{\beta\gamma} = L_{\beta}(c_{\gamma}) + P_{\beta}(c_{\gamma}) + c_{\beta}.$$

From (8) $\gamma \alpha = \beta \gamma$. Since the constant part of the lifting for this mapping is unique, $c_{\gamma\alpha} = c_{\beta\gamma}$.

Therefore because $P_{\beta} = 0$ and $c_{\alpha} = c_{\beta} = 0$, we have statement (ii) that $L_{\beta}(c_{\gamma}) = c_{\gamma}$.

It is convenient to prove (iii) in the following steps.

Step I. Define the function Q by $Q(x) = L_{\gamma}^{-1} P_{\gamma}(x)$. Then $QL_{\alpha}^{m} = L_{\alpha}^{m}Q$ for all $m \in \mathbb{Z}$. To prove this we first derive from (6) that $P_{\gamma\alpha}(x) = P_{\gamma}L_{\alpha}(x)$ and $P_{\beta\gamma}(x) = L_{\beta}P_{\gamma}(x)$. By hypothesis (8) and uniqueness of periodic part $P_{\gamma}L_{\alpha} = L_{\beta}P_{\gamma}$. Substituting (i) in this expression $P_{\gamma}L_{\alpha} = L_{\gamma}L_{\alpha}L_{\gamma}^{-1}P_{\gamma}$ so that $QL_{\alpha} = L_{\alpha}Q$. Thereupon Step I is obtained by induction on m.

Step II. We next recall that if $L: \mathbb{R}^n \to \mathbb{R}^n$ is an invertible linear operator and if $\{L^m x \colon m \in Z\}$ is bounded then either x = 0 or $\{L^m x \colon m \in Z\}$ is bounded away from zero. One way to see this is to express x in a basis that puts L in Jordan form. It can be verified that the hypothesis $\{L^m x \colon m \in Z\}$ is bounded implies that x is a linear combination of characteristic vectors of L belonging to characteristic values of absolute value one.

Step III. If $\{L_{\alpha}^{m}Q(x): m \in Z\}$ is not bounded away from zero then Q(x) = 0. This follows from Step II. The set $\{L_{\alpha}^{m}Q(x) = QL_{\alpha}^{m}(x): m \in Z\}$ is bounded because Q being continuous and periodic is bounded.

Step IV. If $\{L_{\alpha}^m x \colon m \in Z\}$ is not bounded away from Z^n then Q(x) = 0. Since Q is periodic, $L_{\alpha}^m Q(x) = L_{\alpha}^m(x) = Q(L_{\alpha}^m(x) - \nu)$ for $\nu \in Z^n$. By hypothesis there exists a subsequence $\{m_i \colon i = 1, 2, \cdots\}$ of Z and a subset $\{\nu_i \colon i = 1, 2, \cdots\}$ of Z^n such that $L_{\alpha}^{m_i} x - \nu_i \to 0$, $i \to \infty$. Since Q is continuous and Q(0) = 0, $L_{\alpha}^{m_i} Q(x) = Q(L_{\alpha}^{m_i}(x) - \nu_i) \to 0$. By Step III Q(x) = 0.

Now α is ergodic and so almost all orbits of α are dense in T^n . In particular the zero element in T^n is a limit point for almost all orbits or in other words $\{L_{\alpha}^m x \colon m \in Z\}$ is not bounded away from Z^n for almost all $x \in R^n$. From Step IV Q(x) = 0 almost everywhere. By continuity Q = 0 and since L_{γ}^{-1} is nonsingular $P_{\gamma} = 0$.

Remarks. Questions arise whether the theorem holds under weaker hypotheses. In (iii) one cannot merely drop the assumption of ergodicity, for choosing α to be the identity transformation removes all

restrictions on the homeomorphism γ . Another question is whether the theorem holds if γ is a measure preserving transformation instead of a homeomorphism. A positive answer would be significant in ergodic theory, for then an example could be constructed of two Kolmogoroff transformations [2] with the same entropy but which are not conjugate.

REFERENCES

- 1. P. R. Halmos, Lectures in ergodic theory, Publ. Math. Soc. Japan No. 3, The Mathematical Society of Japan, Tokyo, 1956.
- 2. Ja. G. Sinal, Probabilistic ideas in ergodic theory, Amer. Math. Soc. Transl. (2) 31 (1963), 62-84.

International Business Machines Corporation, Yorktown Heights and Brandeis University