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Introduction. Let 7 be a continuous map of the «-dimensional

torus Tn = Rn/Zn into itself where R" is an «-dimensional real Euclid-

ean space and ZB is the subgroup of Rn with integral coordinates. Let

w: Rn-+Tn denote the universal covering map. There is a unique

c = (ci, ■ ■ ■ , cn)ERn with 0^c¿<l, i = l, •••,«, such that ir(c)

= 7(0) and a unique continuous map F: Rn-+Rn with F(0) =c which

is a "lifting" of 7, i.e., which satisfies TF=yw. If we put G(x) = F(x)

—c, xERn, then G\Z" is a homomorphism of Zn into itself and there-

fore extends uniquely to a linear map L : Rn—>Rn. In fact making the

canonical identification of Zn with the fundamental group iri(Tn) oí

Tn, G\Zn is just the homomorphism of 7^(7"") induced by 7. It fol-

lows that if 7 is a homeomorphism then G| Z" is an automorphism of

Z" hence L£SL(w, Z), the group of linear automorphisms of Rn

whose matrices are unimodular, i.e., have determinant ± 1 and integer

entries.

We next note that

(1) F(x) = L(x) + P(x) + c

where P: Rn-+Rn is a continuous periodic map (i.e., P(x+v) =P(x),

xERn, vEZn) satisfying P(0) =0. This fact is established by consider-

ing P(x) = F(x) -L(x) -c. Clearly P(0) = 0. In view of the fact that

LvEZn whenever vEZn we have ir(P(x+v) — P(x)) =w(F(x+v)

— F(x) — Lv) = y(wx + irv) —y(wx) — wLv = 7(7^) — 7(7^) = 0 ; conse-

quently P(x+v)—P(x) is always in Zn. Since Rn is connected and

Zn is discrete P(x+v)—P(x) is (for v fixed) independent of x. Thus

P(x + v) - P(x) = P(0 + v) - P(0) = P(v) = F(v) - Lv - c

= G(v) —Lv which is zero by definition L\ Zn = G\ Zn. We shall call L

the linear part, P the periodic part, and c the constant part of the

lifting F and when necessary place subscripts on these symbols to

indicate the mapping on Tn from which they came.

The linear, periodic, and constant part of a lifting are unique; for

let L', P', c', be other ones. F(x) =L(x)+P(x)+c = L'(x)+P'(x)+c',

yields L(x)-L'(x) =P(x)-P'(x)+c-c'. The right-hand side of the
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last relation is linear while the left is periodic. This can only occur if

L-L' = 0. Then since P(0) =P'(0) =0, it follows that c = c' and

P = P'.
If 7 is a continuous automorphism of Tn, then Fy is linear ; thus its

periodic and constant parts vanish so that Fy = Ly. Also every

L£SL(n, Z) is the lifting of a continuous automorphism on T". The

correspondence y—*Ly is an isomorphism of the group Aut(Pn) with

SL(«, Z). More generally the mapping y—>Ly is a homomorphism

of the group Homeo(rn) onto SL(», Z). We shall prove this by

showing that Laß = LaLß for any two homeomorphisms a and ß of T"

onto itself. By uniqueness of lifting

(2) Faß = FaFß.

On one hand,

(3) Faß(x) = Laß(x) + Paß(x) + caß;

on the other hand, using (1) and adding and subtracting Pa(cß),

FaFß(x) = LaLß(x) + [LaPß(x) + Pa(Lß(x) + Pß(x) + cß) - Pa(cß)]

+ La(cß) + Pa(cß) + ca.

Because LßZnC.Zn the term in the brackets is periodic. This term

vanishes when i=0 so that it is a periodic part of the lifting Faß.

From the uniqueness of the various parts of a lifting

(5) Laß = LaLß,

(6) Paß(x) = LaPß(x) + Pa(Lß(x) + Pß(x) + cß) - Pa(cß),

(7) caß = La(cß) + Pa(cß) + ca.

Finally if 7 is a continuous automorphism of T", it preserves Haar

measure on Tn and to such transformations we can apply the notions

of ergodic theory [l].

Theorem. If a and ß are continuous automorphisms of Tn such that

(8) yay1 = ß

where 7 is a homeomorphism of Tn onto itself then

(i) LyLaL~1 = Lß (a and ß are conjugate elements in the group of

measure preserving transformations on Tn).

(ii) cy is a fixed point of Lß (7(0) is a fixed point of ß).

(iii) If a is ergodic then Py = 0 (7 is a continuous automorphism of

Tn composed with a rotation. The rotation is by a fixed point of ß and

the continuous automorphism satisfies the conjugacy relation between

a and ß).
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Proof. Relation (i) follows immediately from (5).

From (7)

Cya =  Ly(ca)  + Py(ca) + Cy

and

cßy = Lß(cy) + Pß(cy) + cß.

From (8) ya=ßy. Since the constant part of the lifting for this

mapping is unique, cya = cßy.

Therefore because P^ = 0 and ca = cß = 0, we have statement (ii)

that Lß(cy)=cy.

It is convenient to prove (iii) in the following steps.

Step I. Define the function Q by Q(x) = L;1Py(x). Then QL" = L™Q
for all mQZ. To prove this we first derive from (6) that Pya(x)

= PyLa(x) and Pßy(x)=LßPy(x). By hypothesis (8) and uniqueness

of periodic part PyLa = LßPy. Substituting (i) in this expression PyLa

=LyLaL~1Py so that QLa = LaQ. Thereupon Step I is obtained by

induction on m.

Step II. We next recall that if L:Rn^*Rn is an in ver tibie linear

operator and if {Lmx : m £ Z} is bounded then either ¡c = 0 or

{Lmx : m QZ} is bounded away from zero. One way to see this is to

express sein a basis that puts L in Jordan form. It can be verified

that the hypothesis {Lmx: mQZ} is bounded implies that x is a linear

combination of characteristic vectors of L belonging to characteristic

values of absolute value one.

Step III. If {L™Q(x): mQZ] is not bounded away from zero then

Q(x) = 0. This follows from Step II. The set {L%Q(x) = QL%(x) :mQZ]
is bounded because Q being continuous and periodic is bounded.

Step IV. If {L"x: mQZ] is not bounded away from Zn then Q(x)

= 0. Since Q is periodic, L?Q(x) =L%(x)=Q(LZ(x) -v) for j>£Z". By
hypothesis there exists a subsequence {*»,-: *=1, 2, • • • } of Z and

a subset {j\:*=l,2, • • • } of Zn such that Z,™'x —j\—>0, ¿—»oo. Since

Q is continuous and 0(0) =0, L^tQ(x)=Q(L^t(x)-vi)-^0. By Step

III Q(x)=0.
Now a is ergodic and so almost all orbits of a are dense in Tn. In

particular the zero element in Tn is a limit point for almost all orbits

or in other words {L™x : m QZ} is not bounded away from Z" for

almost all xQR". From Step IV Q(x)=0 almost everywhere. By

continuity 0 = 0 and since L'1 is nonsingular P7 = 0.

Remarks. Questions arise whether the theorem holds under weaker

hypotheses. In (iii) one cannot merely drop the assumption of ergo-

dicity, for choosing a to be the identity transformation removes all
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restrictions on the homeomorphism 7. Another question is whether

the theorem holds if 7 is a measure preserving transformation instead

of a homeomorphism. A positive answer would be significant in

ergodic theory, for then an example could be constructed of two

Kolmogoroff transformations [2] with the same entropy but which

are not conjugate.
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