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Let X be a Stein manifold, and let A be an analytic subset of X

A well-known application of Cartan's Theorem B [2, Théorème 3

p. 52] states that each holomorphic function on A is the restriction

of a holomorphic function on X. This paper presents a generaliza-

tion of this application, namely that each normal family of holo-

morphic functions on A is the restriction of a normal family of holo-

morphic functions on X.

1. Let X be a topological space which is o--compact, i.e., the union

of a countable family of compact sets. Let K(X) denote the set of all

compact subsets of X. For KEK(X) and f:X->C define ||/||K

= sup{|/(x)|  |xEK}. Define

B(X) = {f\f:X-+C, U/H* < « for all K E K(X)}.

Clearly B(X) is a complex vector space, and {|| ||k| KEK(X)} is a

family of pseudonorms on B(X) which then becomes a locally convex

vector space. Since X is <r-compact, B(X) is metrizable, and it is

readily checked to be a Fréchet space.

Definition. Let F be a vector subspace of B(X). We say that a

set FC F is normal with respect to V iff every sequence in F has a

subsequence which converges in V.
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Lemma 1. Let Vbea vector subspace of B(X). Then FQVis normal

with respect to V if and only if F is a compact subset of V.

We say that FQB(X) is uniformly bounded on compact sets iff

sup{||/||K|/£p} < °° for all KQK(X). If F is a vector subspace of

B(X) and PCF is normal with respect to V, then F is uniformly

bounded on compact sets.

Definition. Let F be a vector subspace of B(X). We say that the

Vitali theorem holds for V iff every set PCF which is uniformly

bounded on compact sets is normal with respect to V.

Lemma 2. Let V be a vector subspace of B(X). If the Vitali theorem

holds for V, then V is a closed subset of B(X), i.e., V is a Fréchet space

with the induced psudonorms.

Proof. Let/£ F. Then there exists a sequence {/„} in F such that

/„—>•/ for n—»oo. Take KQK(X). There exists an integer «0 such that

||/n— /||jc<1 for «^»o. Let M = max{|¡/„||jt + l|« = l, ■ • ■ ,n0}. Then

11/nlU^M for n = l, 2, • • • . Hence sup{||/„||*|«= 1, 2, • • • } ¿M
<°°, that is {/„|m = 1, 2, • • • } is uniformly bounded on compact

sets. Since the Vitali theorem holds for V, {/„} has a subsequence

which converges in F. The limit of this subsequence must be/. Hence

fQV.

Lemma 3. Let A be a closed subset of the o-compact space X. Define

R:B(X)-*B(A) by R(f) =/| A for fQB(X). Then R is continuous and
linear.

Proof. Clearly R is linear. Each compact subset of A is also com-

pact in X. Hence each pseudonorm in B(A) is the restriction of a

pseudonorm in B(X). Therefore P is continuous.

Lemma 4. Let E and F be Fréchet spaces, and let u: E—+F be continu-

ous, linear, and surjective. Let K be a compact subset of F. Then there

exists a compact subset K' of E such that u(K') =K.

Proof. Let G = w-1(0). Then G is a closed linear subspace of E,

hence E/G is a Fréchet space. Let r : E—+E/G he the residual map, and

define v: E/G-+F by v° r = u. Then v is continuous, linear, and bi-

jective. According to [4, Satz (1), p. 170], v is a topological isomor-

phism. The lemma then follows from [4, Satz (7), p. 281].

2. If X is a complex space, we define H(X) to be the set of holo-

morphic functions on X. As has been proved by Gunning [3] and

Andreotti and Stoll [l, pp. 326-327], the Vitali theorem holds for
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H(X). We say that FEH(X) is a normal family of holomorphic

functions iff F is normal with respect to H(X).

Theorem. Let X be a Stein manifold, and let A be an analytic subset

of X. Let F= {f\ | X G A} be a normal family of holomorphic functions on

A. Then there exists a normal family G={gx|X£A} of holomorphic

functions on X such that g\\A =f\ for X£A.

Proof. According to the well-known application of Theorem B of

Cartan referred to at the beginning of this paper, the restriction map

R: H(X)-+H(A), defined by R(f) =f\A, is onto. By Lemma 3, R is
continuous and linear. Since the Vitali theorem holds for H(X) and

H(A), they are Fréchet spaces (Lemma 2). Application of Lemma 1

and Lemma 4 completes the proof.
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