MASS CONTINUOUS COCHAINS ARE
DIFFERENTIAL FORMS

F. J. ALMGREN, JR.!

Suppose X is the cochain (i.e. linear function) on the linear space
of 1-dimensional oriented polyhedral chains in the (x, y)-plane defined
on 1-simplexes o as follows:

Xo= f dx if the slope of ¢ is rational,

Xo=0 otherwise.

Unlikely as it may seem, there exists a differential 1-form w such that

X-a=fw

for each 1-simplex ¢. In particular, w-¢™ is a bounded Hausdorff
1-dimensional measurable function along the line containing o.

Each k-dimensional integrable differential form w on R*, 0<k=<n,
determines a cochain X on the linear space CiR" of all k-dimensional
oriented polyhedral chains in R", namely

X-a=fw

for each ¢ €C:R". It is natural to seek conditions on an arbitrary
cochain X sufficient to insure the existence of such a corresponding
differential form. Such conditions have usually been expressed in
terms of continuity hypotheses on X. In [5] it was shown that to
each flat cochain and to each sharp cochain there corresponds such a
differential form. In [4] it was shown that to each local L; 1-cochain
in the plane there corresponds such a 1-form. In this paper we make
the observation that the existence of these differential forms as well
as the form indicated in the example above follows almost immedi-
ately from the assumption of the well ordering principle and the con-
tinuum hypothesis. This observation is, in fact, an easy consequence
of H. Federer's remarks on the “sigma-finite” hypothesis of the
Radon-Nikodym theorem which will appear in his book on geo-
metric measure theory. It seems useful, however, to make these
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remarks explicit in this context. Our observation was suggested by,
and gives a partial answer to, a problem of H. Whitney [5, p. 327].

DEFINITIONS. (1) For the definition of a polyhedral chain 4 and
its mass M(4), see |5, pp. 152, 153].

(2) For the definition of a current 4 and its mass M(4), see
[3, pp. 462, 463]. A k-dimensional current 4 in R* is called a k-
dimensional real rectifiable current (or k-dimensional real current) if
and only if for each €> 0 there exists a class 1 mapping f: R*—R*" and
a continuous function g: R*—R such that f| {x: g(x) >0} is a homeo-
morphism and M(4 —f#(R*/\g)) <e. Here R*A\g defines a k-dimen-
sional current in RF in the obvious way. Clearly each k-dimensional
polyhedral chain in R* is a k-dimensional real rectifiable current in a
natural way. The real currents are the oriented analogues of the real
varifolds [1, 5.4].

(3) For each k-dimensional real rectifiable current 4 in R», ”A[I
denotes the associated variation measure [3, p. 464]. Also, 47 (x)
. denotes the k-vector tangent to A at x which is defined and has
norm 1 for ||4|| almost all x in R* [3, p. 495]. We define, for xER"
and measure ¢ on R", O¢, x)=lim,.c*(wr*)~'p{y: |y—x| <r}
whenever this limit exists. Here wy is the k-dimensional area of the
unit k-disk.

(4) H; denotes Hausdorff k-dimensional measure in R* [3, p. 493].
Hj equals Lebesgue k-dimensional measure in R*.

(5) AxR™denotes the real vector space of k-vectors in R", and A*R»
denotes the real vector space of k-covectors in R* [3, p. 461].

THEOREM. Let 0Sk=n< «©, and suppose C.R" denotes either (i) the
real linear space of all k-dimensional oriented polyhedral chains in R*,
or (ii) the real linear space of all k-dimensional real rectifiable currents
in R* Suppose X: CxR"—R is a cochain (i.e. linear function) which is
mass continuous (i.e. there exists m < o such that X -A <mM(A) for
each AECLR™). Assume the continuous hypothesis and the well ordering
principle. Then there exists a differential form w: R*—A*R"™ such that
for each A ECrR",

*) X-A= fmw(x)-A*(x) d|| 4] ».

ProOF.

Part 1. We will prove the theorem only in the case CiR" is the real
linear space of k-dimensional real rectifiable currents in R*. The proof
for polyhedral chains is similar and easier. Let then AC CxR" denote
the class of all k-dimensional connected compact oriented submani-
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folds with boundary of R* of class 1. We will construct the differential
form o so that for each 4 € A, (*) is satisfied. It is then an easy con-
sequence of the definition of real currents that (*) holds for each
AECR". 1t is not difficult to verify that if R, denotes the cardinal
number of the integers, then the cardinal number of A does not ex-
ceed 280, By the continuum hypothesis 2% =N, Using the well order-
ing principle, we now well order the elements 4 of A such that pre-
ceding each element of A there are at most countably many other
elements of A.

Part 2. Suppose m< o and X:CiR"—R is linear with X-4
SmM(A) for each A ECR". For each AC A, let | 4| denote all the
nonboundary points of 4. Let

fa: | 4] =R,
fa@ = lim @)X (AN {y:]y - 2] <r})

if this limit exists
fa(x) = 0 otherwise.

One verifies that f4 is a Baire function and
XANQ = [ et bt

for each continuous g: R*—R.
We define

w: R* > A*Rn
w(®) = fa(x)4~(x)*
where A is the firstelement of A containing x and A7(x)*E€A*R" is

the covector dual to 47(x).
Since, for each 4, BE A,

' E:N (| 4| U |B|), 5 =1

for Hj almost all x€|A4|U|B| [2, p. 129], we have that for H? al-
most all x€ | A|N| B, either f4(x) =fz(x) or fa(x) = —fz(x) depend-
ing on orientations. Since, preceding each 4 € A there are at most
countably many other elements of A, we have that for each A€ A,

w(®)- A~(2) = fa(x)

for Hy almost all x€| A4|. The theorem follows.
REMARK. Both the integral currents I,R" [3, p. 467] and the real
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numbers R are modules over the ring of integers Z. One verifies easily
that each Z module homomorphism X: I,R*—R which is mass con-
tinuous corresponds to a differential form w satisfying (*) for each
AEILR". There are no nontrivial mass continuous Z module homo-
morphisms X : LR"—2Z. '

REMARK. Our theorem implies, of course, the existence of a differ-
ential form corresponding to each flat cochain [5, p. 156], each sharp
cochain [S, p. 160], and, by an easy extension of our argument, to
each local L! cochain [4, p. 447]. Our result, however, says nothing
about the H? measurability of the differential form w (unless, of
course, k=n); indeed, in our initial example, Fubini's theorem tells
us that w cannot be H2 measurable.
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