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1. Summary. Let F(x) be the continuous distribution function of a

random variable X, and Fn(x) be the empirical distribution function

of a random sample Xi, • • • , Xn, taken on X. Using the method of

Birnbaum and Tingey [3] we derive exact probability distribution

functions for the random variables

sup   {F(x)-Fn(x)}/{1-F(x)},
F(z)á¡>

sup {Fn(x) - F(x)]/F(x),
oáf(i)

sup   {F(x) - Fn(x)}/{1 - Fn(x)] and    sup   {Fn(x) - F(x)}/Fn(x)
Pn(x)£b «ÍF.W

where 0<a<l, 0<fc<l, and also for the random variables

sup   {F(x)-Fn(x)}/{1-F(x)},
F(z)<l

sup  {Fn(x) - F(x)}/F(x),
0<F(i)

sup   {F(x)-Fn(x)}/{l-Fn(x)} and    sup   {Fn(x) - F(x)\/Fn(x).
f«(i)<l 0<F„(i)

2. Introduction and some preliminary results. Let Y=F(x). Then

F is a uniformly distributed random variable on (0, 1) and we have

Yi, • • • , Yn as a random sample on Y resulting from this trans-

formation. Let Y* < Y£ < • ■ ■ < Y* be the same set of random vari-

ables arranged in ascending order (called : order statistics) which de-

termines the empirical distribution function

(2.1) Gn(Y) =

0 for   Y < Y*,

k/n   for Y*k ¿ Y < Y*k+h

1 for Y* ¿ Y.

We are going to need the following result of Birnbaum and Tingey

W-_
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P {     sup     (F(x) - Fn(x)) < el = P Í sup   (Y - Gn(Y)) < el
{-»><x<+<o ) lo<7<i ;

/> * /• Xfn+e fk/n+ë    /» 1 /» 1 pi

7o-0 J Yi •> Yk J Yk+1 J Yn-tJ Yn-l

(2 2)
■dY*ndY*n-i ■ • ■ dY*k+2dY*k+i ■ ■ ■ dY*2dY*

-'-i(;)o--rKr"**
where   £ = [«(1—e) ]= greatest  integer   contained   in   «(1 — e)   and

0<€^1.
Smirnov [6] obtained the asymptotic expression

(2.3) lim Pb(2(m)-1'2) = 1 - e-2'\

The following lemmas are going to be useful.

Lemma 1. For all real a, ß and integer «^0

(2.4) 08-»)¿(*)(« + 0*03 - i)"-'-1 = (et + ß)\

Relation (2.4) was proved by Abel [l, Vol. 1, p. 102]. For b = n the

left-hand term is defined as the limit for b-+n.

Lemma 2. For all real a, ß and integer «>0

(a - 1)0! - «) £ -J—( n) (a + i)<(ß - O-*"1
(2.5) i      -í+lV^

= —— [(a + ß)»(a + ß-n-l)-(ß+ l)'(ß - n)].
n+ 1

Relation (2.5) was proved by Birnbaum and Pyke (Lemma 3 of

[2]).

Lemma 3. For all real a^l, ß^n and integer «>0

ï^1 /    »   \ (a + ß)n - (ß + 1)"

,»o \l + 1/ a — 1

Proof of Lemma 3. We have

c:d- ch'+ù-
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and thus the left-hand side of (2.6) can be written as

= (» + l) E txt( . ) (« + O'O» - 0-
,_o   * +  1 \ t /

-è(w)(«+i),'03-»)n-*-1-

We can directly apply now Lemma 2 and Lemma 1 and statement of

Lemma 3 follows immediately.

3. Exact probability distributions of random variables of §1.

Theorem 1.

I F(x) - Fn(x)       )
(3.1) P \   sup      y y < 4 = iV(e, b, n)

( F(x)g6       1 - F(x) )

where

„   í'-°
=   S K(e,j,n),

€>0and 6tssttcÄiAai 0<e/(l+€)=á6, and where k=[n{(l+e)b — e}],

and K(e, j, n) is defined as

K(e,j,n)

= (n)(i—i_L_rv_i_+_i_r_i_
\j ) \       n(l + e)      1 + J     \n(l + e)      1 + 6/     1 + <

and for j = n, K(e, j, n) is defined as its limit for j—^n, that is equal to

e/(l+*>.

Corollary to Theorem 1.

t Fn(x) - F(x)       )
(3.2) P \   sup       w < ^ = tf'(e> a, n)

( as?« 2?(:r) j

where N'(e, a, n) is given by the above expression for N(e, b, n) after

replacing b by 1—ain it.

(3.2) follows immediately from Theorem 1 if we put 6 = 1— a and

replace 1 — F(x) by F(x) and 1 — Fn(x) by Fn(x) in it.
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Theorem 2.

( F(x) - Fn(x)       )
(3.3) P \   sup      7        /' < t\ - M(t, b, n)

K ?»(x)s»    1 - Fn(x) )

where

k

M(t,b,n) = 1 - £z,(e,i, n)

n

=   £ L(e,j,n),       0<e<l
i-k+l

and where k = [nb], and L(e, j, n) is defined as

^•>-(;)['-i-('4)m+-(-^)r-
andforj = n, L(e,j, n) is defined as its limit for j—rn, that is as equal to e.

Remark on Theorem 2. It is interesting to note here that Theo-

rem 2 can also be written as

i F(x) - Fn(x)       I * .
)  sup ~~4—^7T~ < zr = 1 ~ £ K(*>J> n)

.,  .. 1f„WS6    1 - F(x) ) i=o
(3.4)

-   £ K(z,j,n)
j-k+l

where k= [nb], z = e/(l—e), 0<e<l and K(-, j, n) is as it was de-

fined in Theorem 1. Thus N(-, b, «) of Theorem 1 and M(-, b, n)

of Theorem 2 actually have the same form and they differ only in the

definition of their k's respectively. Comparing (3.1) and (3.4) we

see that this difference in the definition of their respective k's is due

to the replacement of the fixed interval : F(x) ^ b of Theorem 1 by

the random interval: Fn(x) ¿b oí (3.4) in their respective "sup" state-

ments. We will actually see that the limiting forms of (3.1), (3.3) and

(3.4) are the same.

Corollary to Theorem 2.

( FJx) - F(x)       )
(3.5) P \    sup ' < 4 = M'k a> M)

I. a<Fn(x) Fn(x) )

where M'(t, a, n) is given by the expression for M(e, b, n) after replacing

b by l—o in it.
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(3.5) follows from (3.3) exactly the same way as (3.2) does from

(3.1).
Similarly, as a corollary to (3.4), we have

( Fn(x) - F(x)       ) *
P \   sup       w < z\ = 1 - £ K(z,j, n)

(3 6) * «*'•«>        F(x) ) J=0

n

=   22 K(z,j,n),
S-k+l

and this is just another way of writing (3.5), where k= [n(l—a)],

z = e/(l —e), 0<e<l, and the relation of (3.6) to (3.2) is the same

as that of (3.4) to (3.1).
A REMARK ON THE LIMITING FORMS  OF ABOVE THEOREMS.   In his

fundamental paper [5], A. Rényi obtained, among many others, the

following result:

(                Fn(x) - F(x)       )
lim P In1'*  sup ——-— < y\ =

n-*=o (. »Sf(i) F(x) )
*(y(a/(l - a)y'2)

(3.7)
.jKa/U-a))1/*

/Hi(o/U-ol) '■
exn(-t2/2)dl,       y > 0,

a0

o,      y ¿ o,

that is the limiting form of (3.2) with e = y(n)~112.

Evidently, the following statement is also true:

(3.8)     lim P in1'2  sup < y\ = $(y((l - b)/b)1'2
«-.«      (       r(.x)â»     1 — F(x) )

where $(•) is as given in (3.7), and this is the limiting form of (3.1)

with e=yra-1/2.

Using the Glivenko-Cantelli theorem :

P Í lira (     sup       | Fn(x) - F(x) \ ) = ol = 1,
V n—*co  \— «<a:< + co / J

it can be very easily shown that the fixed intervals: a¿F(x) and

F(x) ¿b of (3.7) and (3.8) can be replaced by the random intervals:

a¿ Fn(x) and Fn(x) ¿b under their indicated "sup"'s respectively and

the same limit theorems hold. This implies that the limiting forms of

(3.6) and (3.4), with z=yn~112, are also given by (3.7) and (3.8) re-

spectively. But (3.6) is just another way of writing (3.5) and the

same is true about (3.4) in relation to (3.3). Thus the limiting form

of (3.5) is also given by (3.7) and that of (3.3) by (3.8) with e=y»-1'*

in both of them.
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Proof of Theorem 1. Keeping with the notation of §2 it is clear

that the distribution of the random variable of (3.1) is identical with

that of suprs&{ Y-G„(Y) }/(l- Y) and saying that

,     % Y-Gn(Y)
(3.9) sup—-— <e

Yé»      1 — Y

is equivalent to saying: F<L7B(F)/(l + e)+€/(l + e) for all Y^b.

From the definition of Gn(Y) it follows that F< {Gn(Y)+e}/(l+e)

for all Y^b occurs if and only if the ordered random sample

(3.10) 0 < Y* < F* < • • • < Y*< 1

falls into the region

yU < Y* < U^— + eV(l + e)   forj = 1, • • • , k + 1,
(3.11)

F*_! < Y* < 1        for; = k + 2, ■ ■ • , n) ",

where Yq =0 and k is the greatest integer so that

(3.12) (^-+e)/(l + e)<;è,

that is k= [n{(l+e)b — e} ] and thus, to make k^O, b is such that

0<e/(l + e)g&.

The density function of (3.10) is given by

(3.13) n\dY*dY*2 ■ ■ • dY*n

and the probability that (3.10) falls into the region (3.11) is given by

/.«/(l+f)    f, l/n(l+«)+«/(l+<) /.*/n(l+«)+«/(l+e)    /. 1

Fo=0 •/ Y\ J Yk J YkjYt

,    aFn-.-rfFt^F^-.-dFtdF*

with e>0 and k= [w{(l+e)& — e} ]. Comparing this integral to that

of (2.2) we conclude that it is equal to

!_£("%_i_L.rv-i-+--i-r-i-
U\j/\       <\ + e)      1 + e/      \«(1 + e)      1 + e)     1 + e

(3 15) *
= 1 - £ K(e,j, n),    e > 0,    k = [«{(1 + e)¿> - e}]

y-o
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on using notation introduced in (3.1). This result can be checked by

direct evaluation of (3.14). In order to show that 1 — 22*-o -K(e> j> n)

= 22"-t+i F^(e,j, M) we wül have to verify that

n

(3.16) 22 -^(e>3> ») = 1    for all integers n > 0.
y-o

We consider

t,K(e,j,n)
i~o

= {1/»(1 + e)} -» -i- Í(n)(n- j)»->(j + ne)^
1   +  6 j=o\j  /

= {l/«(l + e)}»-1 -Î- Z (. * )(n - 1 - i)--1^ + l + OS
1+6   <_1   \t  +   1/

where i=j— 1 and continuing

= {l/n(l+e)}»-i-^-\-+ £(   "  ) (a+i)-(/3-i)«--»l
1 + e L«e      ,v_o\t+l/ J

where a = en+1 and ß = n — l and applying Lemma 3 we immediately

get (3.16). This completes the proof of Theorem 1.

Proof of Theorem 2. On the lines of proof of Theorem 1 we can

say here that the event of (3.3) is equivalent to (3.10) falling into the

region

* *    i - 1        /      j - 1\
F/_, < Yi <J-+ e   1 - 7-) for j = 1, 2, • • • , k + 1,

n \ n   /
(3.17) * *

F,_i < Y¡ < 1       iorj - k + 2, • • •, n,

where Y* = 0 and & is greatest integer such that fe/w + e(l — k/n)

¿b + e(l— 6)<1 and thus &=[n6]. An integral expression of type

(3.14) immediately gives, by comparison to (2.2), M(e, b, n) of (3.3)

as equal to 1 — 22*-o L(e,j, n), 0<e<l and k= [nb]. That M(e, b, n)
of (3.3) is also equal to 22"=*+i 2^(e, j, n) follows from

n

(3.18) £ £(e>.7> ») = 1    for all integer n > 0,
y=o

which can be verified by applying Lemma 3 again the way we did

when proving (3.16), or it can be seen immediately from (3.4) and

(3.16). This completes the proof of Theorem 2.
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Theorem 3.

( F(x) - Fn(x)       \ ç*
Pi   sup      y y   <e\ = l-£*(e,¿«)

(3 19) F(X)<1        ~ y"°

e> 0.
1   +   €

The first equality of (3.19) can be verified exactly the same way

as Theorem 1 and the second equality follows from (3.16) and from

the definition of K(e,j, n) for j = n.

As a corollary to Theorem 3 we also have that

Í Fn(x) - F(x)        ) e
(3.20) <   sup  ——-— < e} =-,        e > 0.

I o<fW F(x) j       1 + e

Theorem 3 and its corollary (3.20) are not new and were first

proved by Daniels [4].

Theorem 4.

( F(x) - Fn(x)      ) ^
p\ sup     ;      '   <4 =i-£^,i.«)

*(I)<1     ~ y"°

= e,        0<e< 1.

The first equality of (3.21) is verified exactly the same way as Theo-

rem 2 while the second one follows from (3.18) and definition of

L(e, j, ») for j = w.

Theorem 4 can also be written as

(3.22)
( F(x) - Fn(x)        1
<    sup   -< z> = —
I F„(/<1       1  - F(x) ) 1

where 2 = e/(l — e), 0<e<l, and it is only proper that this form is

equivalent to (3.19) for none of the results depend on « and we have

already remarked that the fixed interval : F(x) < 1 can be replaced by

the random one: Fn(x) <1 under respective "sup"'s in the limit as

«—»oo and the same statements must hold. So in this case they cannot

but be equal for finite » too, both of the results being independent

of «.

As corollaries to Theorem 4 we also have

(             Fn(x) - F(x)       )
(3.23)      P{   sup   ——-i^<A=e,       0<€<1

{ 0<f„W Fn(x) )

and
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( FJx) - F(x)       1 z
(3.24) P \   sup       W < z\ = —-,

lo<Fnd)       F(«) ;      1 + z

where z = e/(l—e), 0<e<l. (3.24) compares with (3.20) in the same

sense as (3.22) does with (3.19).

Appendix. Papers [7], [8] and [9] in the list of references were

brought to my attention by the referee of this paper. The problem

treated in [8] and [9] is different from that of this paper, though

closely related to it. To illustrate this point, in the terminology of

this paper, [8] and [9] examine the exact distribution of the random

variable

Fn(x) - F(x)
sup    -

0<F(z)áo F(x)

while I deal with

Fn(x) - F(x)
sup    -

o<«sp(i) F(x)

in (3.2). The method of proof is also not the same.

There is an overlap between [7] and this paper. Theorem 1 of both

papers deals with the exact distribution of the same random variable.

However, their respective conclusions appear to be somewhat differ-

ent. I believe the normalizing factor

Tzf MVm(l -&)—1
L m-k \ mj J

is missing from formula (11) of Ishii's paper [7] and with this cor-

rection his result is correct. The same is true, mutatis mutandis, re-

garding his formula (16).

In this light it seems that (3.1) of this paper is a simpler version of

Ishii's corrected formula (11).
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BANACH ALGEBRAS OF SCALAR-TYPE ELEMENTS

BERTRAM WALSH

In [5] H. Schaefer asked whether a locally convex algebra having

the property that each of its elements is "spectral" (i.e. can be repre-

sented as the integral of some measurable function with respect to

some spectral measure [is of "scalar type" in the sense of Dunford])

must necessarily be a commutative algebra. This note answers the

question only for Banach algebras, but shows that the answer is

affirmative under a hypothesis less restrictive than that which

Schaefer suggests, and also (via a theorem of Katznelson [3]) that

in fact a Banach algebra satisfying this hypothesis is automatically

isomorphic to Q(M), M its maximal ideal space. The result may also

be viewed then as a variant of Katznelson's, in which commutativity

and semisimplicity are not required a priori.

For simplicity's sake the presence of an identity is assumed in all

algebras discussed below, and homomorphisms are assumed to carry

identities to identities. The modifications necessary to dispense with

these assumptions are straightforward.

Let 21 be a real or a complex Banach algebra. We shall say that an

element aE 91 is prescalar under the following circumstances :

(1) If 21 is a real Banach algebra, we require that the spectrum of

a (as defined for real Banach algebras via complexification—see [4,

p. 28]) be real, and that there be a homomorphism ha:eR(<r(a))—»21

(where as usual QR(ff(a)) is the sup-norm algebra of continuous real-
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