The proof is completed by observing that

$$\int_0^1 \Omega(kf) \ d\mu \ge \sum \Phi(2c_{m_n})\mu(E_{m_n}) \ge \sum_{n=1}^\infty \alpha s_0.$$

REFERENCE

1. Krasnosel'skii and Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.

Northwestern University

ON A COMBINATORIAL PROBLEM OF ERDÖS

D. KLEITMAN

Let C(n, m) denote the binomial coefficient n!/(m!n-m!). Let S be a set containing N elements and let X be a collection of subsets of S with the property that if A, B and C are distinct elements of X, then $A \cup B \neq C$. Erdös [1], [2], has conjectured that X contains at most KC(N, [N/2]) elements where K is a constant independent of X and N. The problem is related to a result of Sperner [3] to the effect that if the collection X has the more restrictive property that no element of X contains any other, then X can have at most C(N, [N/2]) elements.

We show below that Erdös' conjecture for $K=2^{3/2}$ can be deduced directly from Sperner's result.

Let L_N be defined by

$$L_N \equiv 2^{\lfloor N/2 \rfloor} C(N - \lfloor N/2 \rfloor, \left[\frac{1}{2} (N - \lfloor N/2 \rfloor) \right]) + 2^{N - \lfloor N/2 \rfloor} C(\lfloor N/2 \rfloor, \lfloor N/4 \rfloor).$$

An easy calculation shows that L_N is always less than $2^{3/2}C(N, [N/2])$ to which it is asymptotic for large N. We prove:

THEOREM. If X is a family of subsets of an N element set S such that no three distinct A, B, C in X satisfy $A \cup B = C$, then X has less than L_N elements.

PROOF. For any finite set T and family X of subsets of T define

$$m_T(X) \equiv \{ A \in X \mid B \in X \text{ and } B \subset A \text{ imply } B = A \}.$$

Received by the editors March 9, 1965.

Note that $m_T(X)$ satisfies the hypothesis of Sperner's theorem and hence $m_T(X)$ contains at most C(M, [M/2]) where M is the number of elements in T.

Let $S = T_1 \cup T_2$ where $T_1 \cap T_2 = \emptyset$ and T_1 contains [N/2] elements. For each subset $A \subset S$ let

$$D_j(A) = \{ B \in X \mid B \cap T_j = A \cap T_j \}, \qquad j = 1, 2.$$

Note that $m_{\bullet}(D_2(A))$ and $m_{T_1}(\{B \cap T_1 | B \in D_2(A)\})$ have the same number of elements. In consequence, since T_1 has $\lfloor N/2 \rfloor$ elements, $m_{\bullet}(D_2(A))$ can have at most $C(\lfloor N/2 \rfloor, \lfloor N/4 \rfloor)$ elements. Similarly $m_{\bullet}(D_1(A))$ can have at most $C(N - \lfloor N/2 \rfloor, \lfloor \frac{1}{2}(N - \lfloor N/2 \rfloor))$ elements.

Next we show that if $A \in X$ then $A \in m_s(D_1(A)) \cup m_s(D_2(A))$. Suppose $A \in X$ and $A \notin m_s(D_1(A)) \cup m_s(D_2(A))$. Then there are subsets B_1 and B_2 such that $B_j \cap T_j = A \cap T_j$, $B_j \neq A$, $B_j \subset A$, $B_j \in X$, j = 1, 2. But then, $B_1 \cup B_2 = A$ and B_1 and B_2 and A are distinct and hence $A \notin X$. Thus we have shown that $X \subset \bigcup_{A \in X} \{(m(D_1(A)) \cup m(D_2(A))\}$.

Note that $m_{\bullet}(D_1(A)) = m_{\bullet}(D_1(B))$ if $A \cap T_1 = B \cap T_1$. Hence there are at most $2^{\lfloor N/2 \rfloor}$ distinct families $m_{\bullet}(D_1(A))$, one for each distinct $A \cap T_1$. Similarly, there are at most $2^{N-\lfloor N/2 \rfloor}$ distinct families $m_{\bullet}(D_2(A))$. Hence the number of elements in X is at most L_N . L_N can be reduced by $C(\lfloor N/2 \rfloor, \lfloor N/4 \rfloor) \cdot C(N-\lfloor N/2 \rfloor, \lfloor \frac{1}{2}(N-\lfloor N/2 \rfloor) \rfloor)$ by taking into account the overlap between the elements of the

$$m_{\bullet}(D_1)$$
's and $m_{\bullet}(D_2)$'s.

The proof above makes use of only part of the hypothesis; namely, that X contains no subset A which is a union of two others, B and C, with

$$B \cap T_1 = A \cap T_1,$$

$$C \cap (S - T_1) = A \cap (S - T_1),$$

for a given [N/2] element subset T_1 of S. One can construct an X satisfying these conditions with only $2C([N/2], [N/4])C(N-[N/2], \frac{1}{2}[N-[N/2]])-1$ elements fewer than the maximum noted above, so that $2^{3/2}C(N, [N/2])(1+o(N))$ is a best bound, for families X subject to this weaker restriction.

The upper limit $2^{3/2}$ deduced for K above is not a best estimate under the more general limitation on X suggested by Erdös. If we use the fact that the intersections with T_1 of the elements of the D_2 's must form a family satisfying our hypotheses for the $\lfloor N/2 \rfloor$ element set T_1 , the estimate for K given above can be reduced by approximately 5 percent for large N. The best value for K is probably 2

(realized for N=1) and, if the maximum number of elements of X is written as $K_NC(N, [N/2])$ it may be that K_N approaches as N increases.

The result may be straightforwardly extended to collections X restricted such that no element contains the union of j others. One can deduce $j^{3/2}C(N, [N/2])$ as upper limit on the number of elements in such an X.

I would like to thank Dr. E. Brown for his help.

BIBLIOGRAPHY

- 1. P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898-902.
- 2. S. Ulam, A collection of mathematical problems, Interscience, New York, 1960, p. 27.
- 3. E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928), 544-548.

BRANDEIS UNIVERSITY