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1. Introduction. It is the purpose of this note to generalize several

related results in the theory of numbers due to E. Cohen. In particu-

lar, Theorem 1 of this paper contains as special cases Theorems 2.1,

3.1, and 4.1 of [2]. A corollary of Theorem 1 gives an estimate for the

enumerative function 7V(x) =■ zZ^ i^-=r=x, rEN) of certain integer

sequences N.

Let k denote a fixed integer ^2, and denote by Lk the set of all

integers r>0 each prime divisor of which has multiplicity^&. The

integer 1 is taken to be in Lk for every k. For integral r>0, Pt(r) is

defined to be the largest divisor of r in Lk. In §3 Theorem 1 is applied

to a discussion of the sequence of integers r for which Pi(r) has speci-

fied properties. If r = p'// ■ • ■ p% is the canonical factorization of r

and if the function A is defined by

(1) Air) = (ei - 1) + ie2 - 1) + - - - + (em - 1)        (A(l) = 0),

then a consequence of this discussion in the case k = 2 is the formula

6     ^    hir)
(2) <*(«)=-   £   ^~

X2   4(,)_n   *M

for the density din) of the sequence D„ consisting of all r>0 for

which A(r) =ra. In this formula l2 is the characteristic function of L2,

i.e., l2ir) = l or 0 according as rELz or rE-^2, ^ir) is Dedekind's

■^-function defined by (6), and the summation is over all r for which

A(r)=ra. The sequence D„ was originally studied by A. Renyi [5]

who showed that

(3) £ din)r = -ln(l + .    ,     '  --),        I f I  < 2.
n-0 TT2    p     \ ip+  l)ip -  Z)/

In §3 a generalization of this formula will be indicated.

For a discussion of the sequence Dn and a derivation of (3) from a

statistical point of view see Kac's book [4]. It is interesting to note

that, contrary to Kac's remark, the rather elegant explicit formula

(2) for the density din) can be obtained.
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For further applications of Theorem 1 the reader is referred to [6].

2. Main results. For this section the following notation will be

adopted: Z will denote the set of all positive integers; A and B are

subsets of Z; S, T, and U, sets of complex numbers;/and g, functions

from ZXZ to the complex numbers; and p, a function from Z to the

complex numbers. The O-estimates of this section and the next are

intended for all x sufficiently large.

Lemma 1. Let sets B, T, U and functions f and g be given. Denote by

j8 the characteristic function of B. Assume that there exist non-negative

functions K and M and numbers 5 and e with e ̂  0 and 1 > 8 2:0 such

that

£ P(r) = K(n)x + 0(M(n)xi log* x).
rsX;f(r,n)eT;o(r,n)eU

Then for any a^O

^y.a+1

X) r°l3(r) = K(n)-\- 0((K(n) A- M(n))x"+S log' x).
rS*;/(r.n)eT;e(r,n)e(7 a +  1

The proof is straightforward; details are given in [6].

A special case of Lemma 1 merits mention.

Corollary. (f(r, n)=g(r, n) = (r, n); T=U= {l}.) If

X      /3(r) = K(n)x -\- 0(M(n)xt log' x)
r£x; (r,n)—1

with 0 :£ 8 < 1, OsSe, then for any a ^ 0

x"+1
X)      r°0(r) = K(n)-h 0((K(n) -\- M(n))xa+l log' x).

rsx;(r,n)=l « 4" 1

The principal result of this paper is the following theorem whose

proof on the basis of Lemma 1 is completely analogous to the proof of

Theorem 2.1 of [2]. (See also [6, §3].)

Theorem 1. Let B, T, U,f, and g be specified so that the hypotheses of

Lemma 1 are satisfied. Suppose also that there is a set A such that every

positive integer r is uniquely factorable in the form

r=a(r)b(r),    a(r) E A,    b(r) E B,    g(a(r), b(r)) G U.

Then for any a5^0 and any choice of p and S such that p(r) ES for at

least one r
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Cpaix, S) =■ E iKr))'
rsx;f(a(r),b(r))eT;p(a(r))eS

X"+1 KM
= —— IZ        —rr + 0(P,«(x, S)x«+* log' x)

a +  1 rSx;re4;p(r)eS   ra+l

where

-   ,     _ v Jg(r) + M(r)

rix;r£A;p(T)£S T T"

Corollary 1.1. Under the hypotheses of Theorem 1 the number of

integers ^x 5rac/t that fiair), bir))ET and piair))ES is

^         Kir)
Cpoix, S) = x zZ -+ O(Pp0(x, S)xs log* x).

rsi;re^l;p(r)eS      »"

Moreover, if zZ^ir)/r irEA, pir)ES) converges and RPoix, S) =0(x()

for some t<8, then the density of the set of all r such that fiair), bir))ET

and piair))ES is given by zZK(r)/r irEA, pir)ES).

3. An application. Corollary 1.1 appears to be limited in scope.

Nevertheless, when it is applicable it provides a convenient tool for

studying the sequence of integers r for which a(r) has a given prop-

erty. One such application will be indicated here.

For integral k ^ 2 let Qk denote the set of all r > 0 such that each

prime factor of r has multiplicity <k. The integers in Qk will be called

jfe-free integers. The integer 1 is taken to be &-free for every k. Clearly,

every positive integer r is uniquely factorable in the form

(4) r = Lkir)Qkir),    Lkir) E I*,    Q„(r) E Qk,    (I*(r), &(r)) = 1

where Lk is defined in the introduction. Furthermore, if qk is the char-

acteristic function of Qk and

(5) *»(r) =- r XJ (1 + p-1 + P~2 + • • • + p-(k~l)),
p\r

then by obvious modifications of the proof of Lemma 5.2 of [l]one

obtains the following lemma, which shows that the hypotheses of

Theorem 1 are satisfied if A=Lk, B = Qk, T = Z, U={l}, fir, ra)
= g(>, «) = (*", «).

Lemma 2. If din) denotes the number of divisors of ra which belong to

Q2 and qk is the characteristic function of Qk, then
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rs*!(r,n)-l f (*)**(»)

zf/iere SI^ is gwera 6y (5) awd f is the Riemann zeta-function.

Furthermore, if lk is the characteristic function of Lk, then using

the estimates X)rs.feM =c(fe)x1'*4-G(x1'(*+1)) [3], 0(r)=O(r<) for

arbitrary 2>0 [l, §3], and r/^k(r) =0(1), one can show by partial

summation that  XXi ^M/^tM converges and

^ (0(1)     if a > 0,
P,n-       £      h(r)(d(r) A-r/ttk)Mr))r-("+1>» = \   "\    .f

rs*;p(r)6S lO(x')     if a = 0,

for any function p and set 5 and every e>0. Therefore, Theorem 1

implies the following result.

Theorem 2. If Qk(r) is defined by (4), then for any function p, any

a 2:0, and any S for which p(r)ES for at least one r

£        ((?*(/))" = ̂ f+' X   -^yr
r<x;p(L«(r))eS f(£)(a-|-l)   p(r)£S r°*t(r)

rOCa^1'*)    ifa>0,

lO(x'+1/*)     ifa = 0,

for every e > 0.

Take p(r)=r, S = Z, a=l. Since CMO is the largest unitary fe-free

divisor of r, i.e., the largest &-free divisor of r which is relatively prime

to its conjugate divisor, we obtain

Corollary 2.1.

1   t-^ x      "      lk(r)
- Z ft« = —- E -T7T + 0(xl/A)-
x  rsx 2f(£)  r=1   r*i(c)

7« of&er words, the average order of the largest unitary k-free divisor of

an integer is (x/2f(fe)) Xr-i h(r)/f^k(r).

Now let p(r) =r, S = Z, a = 0. Then Theorem 2 implies the follow-

ing corollary.

Corollary 2.2. If lk is the characteristic function of Lk and ^k is

defined by (5), then

r-1   *k(r)
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In Theorem 2 put S= {ra}, ra integral, «2;0 and let p=A, where A

is defined in the introduction. Then with a = 0 we get

Corollary 2.3. For every e>0,

Z l = -£r   £   ~ + Oix*»»).
rsi;A(Lt(r))-n $(.«)    A(r)=n    **(.'')

7ra particular, the density dkin) of the set of all r such that A(L4(r)) =ra

is (l/f(£)) zZlk(r)/^kir) where the summation extends over all r such

that A(r)=ra.

Note, however, that A(L2(r)) = A(r). Hence, if

(6) *(r) = *,(r) = r II (1 + 1//0 = ' E /* W<*
p|r d|r

where ju is Mobius' function, we obtain the result stated in the intro-

duction.

Corollary 2.4. For every e>0,

^ 6x    „,   l2{r)

r£z;A(r)-n IT     A(r)-n   *(*")

7ra particular, the density of the set of all r such that Air) =ra is given

by (2).

Finally, we note that a generalization of Renyi's formula (3) can

be proved. With dkin) defined as in Corollary 2.3,

" 1    _. / p - 1     z*-1 \

s *(»)«- = — nfi + ~— -—)
n-0 fW     P    \ P     —   1   P  —  2/

for |z| <2. This result follows from a more general theorem concern-

ing the factorization of power series into infinite products over primes

[6, Theorems 1 and 3]. This topic will be treated in a later paper.
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ANTIFLEXIBLE ALGEBRAS WHICH ARE NOT
POWER-ASSOCIATIVE

D. J. RODABAUGH

1. Introduction. An algebra A will be called antiflexible if the ele-

ments of A satisfy the identity

(1) (x, y, z) = (z, y, x).

Power-associative antiflexible algebras have been studied by the

author [3] and Kosier [l].

As a matter of terminology, we shall define an algebra as a finite

dimensional vector space on which a multiplication is defined in

which both distributive laws are satisfied. If A is an algebra over a

field F of characteristic not two, then A has an attached algebra A +

which is the same additive group as A but the multiplication x-y of

A+ is defined by

(2) x-y = (xy 4- yx)/2.

In any algebra x" is inductively defined by x1 = x and x* = x*_1x. An

algebra is power-associative if xaxh = xa+h for all a, b. The associator

(x, y, z) is defined as (xy)z — x(yz) and the commutator (x, y) is

defined as xy—yx. For our purposes, A is nodal if every member of A

can be written as a-14-z with z nil in A+.

Since we are not assuming power-associativity, we will define the

radical as the maximal ideal of A which is nil in A+. An algebra is

semisimple if its radical is zero. An algebra is simple if it is semi-

simple and if it contains no proper ideals. It should be clear that, in

the case of power-associative antiflexible algebras, these definitions

are equivalent to the ones in [2], [3].
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