EXTENSION OF FUNCTIONALS AND INEQUALITIES ON AN ABELIAN SEMI-GROUP¹

ROBERT KAUFMAN

Let (G, +) be an abelian semi-group and N a real function on G satisfying

- (1) $N \ge 0$,
- (2) $N(x+y) \leq N(x)N(y)$, for all $x, y \in G$.

The function $N^*(x) = \lim_{n\to\infty} N^{1/n}(nx)$ also satisfies (1) and (2). In addition, $N^*(nx) = (N^*(x))^n$.

We are interested in functions M on G such that

- (i) $0 \le M \le N$,
- (ii) M(x+y) = M(x) M(y).

For such functions there is an analogue of the Hahn-Banach Theorem. Let $H \subseteq G$ be a subsemi-group of G and M a non-negative function on H satisfying (ii) for all $x, y \in H$ and

(iii) $M(x+h) \le M(h)N(x)$ whenever $x \in G$, $h \in H$, and $h+x \in H$. Such a function admits an extension \overline{M} to all of G fulfilling (i) and (ii).

This extension criterion is suggested by the theorem of K. A. Ross [1], which is concerned with complex-valued functions ("semicharacters"). In a supplement to this note the present result will be combined with the Gelfand theory of commutative Banach algebras to give an extension of Ross' theorem.

PROOF. The extension \overline{M} will first be constructed under this additional hypothesis:

(A) For each $x \in G$, there exists $y \in G$ such that $x+y \in H$ and M(x+y) > 0.

It follows from (A) that M>0 everywhere on H, for if $h\in H$, $y+h\in H$, $M(y+h)\leq N(y)M(h)$. Similarly, if $h_i\in H$ and $x+h_1=x+h_2$, $M(h_1)=M(h_2)$.

The problem can now be reduced to the case of a semi-group with cancellation. Specifically, let R be the equivalence relation in $G \times G$ of pairs (x, y) such that x+z=y+z for some $z \in G$. Using associativity and commutativity it is easily verified that R is indeed an equivalence on G. More is true: if we set $\pi(x) = R[x]$, $\pi(G)$ has a unique semi-group structure such that π is a homomorphism of G onto $\pi(G)$. Also, $\pi(G)$ is a cancellation semi-group. Its elements are denoted by α , β , γ and $x \in \alpha$ means $\pi(x) = \alpha$.

Received by the editors July 17, 1964 and, in revised form, December 4, 1964.

¹ This work was done while the author was a pre-doctoral fellow of the National Science Foundation.

Define $L(\alpha) = \inf \{ N(x); x \in \alpha \}$. From the usual argument for normed linear spaces it is clear that L fulfills (1) and (2) in place of N. If $\pi(h_1) = \pi(h_2)$, $h_i \in H$, $M(h_1) = M(h_2)$. There is thus a multiplicative functional E on $\pi(H)$, defined by $E \circ \pi = M$. (A) is still true.

To complete the reduction of the problem, it is necessary to prove the analogue of (iii),

(iii)' $E(\alpha+\beta) \leq E(\alpha)L(\beta)$, whenever $\alpha \in \pi(H)$, $\beta \in \pi(G)$, $\alpha+\beta \in \pi(H)$.

Let $h_1 \in H \cap \alpha$, $x \in \beta$. $\pi(h_1+x) \in \pi(H)$ means the existence of $y \in G$ and $h_2 \in H$ such that $h_1+x+y=h_2+y$. Using (A), we can replace y by $h_3 \in H$: $h_1+x+h_3=h_2+h_3$. $M(h_2)M(h_3) \leq M(h_3)M(h_1)N(x)$ by (i) and (iii). Since M>0 on H, $M(h_2) \leq M(h_1)N(x)$. Thus $E(\alpha+\beta)=M(h_2) \leq M(h_1)N(x)=E(\alpha)N(x)$. Since $x \in \beta$ was arbitrary, (iii)' holds.

If an extension, say \overline{E} , is possible in this reduced case, $\overline{M} = \overline{E}$ o π is a fortiori an admissible extension for the given semi-group G. It is more convenient to return to that G and introduce the cancellation law as hypothesis for the remainder of the proof.

For $X \in G$ define $\mu = \mu(x) = \sup \{ M(y + nx + h) / N^*(y) M(h) \}^{1/n}$, the supremum being taken over all $y, n \ge 1, h \in H$ such that $y + nx + h \in H$. It is easy to replace N by N^* in requirement (iii). Therefore

$$M(y + nx + h) \le N^*(y + nx)M(h) \le N^*(y)N^*(x)^nM(h).$$

Thus $\mu \leq N^*(x)$.

If \overline{M} were an extension to all of G satisfying (i) and (ii), necessarily $\overline{M}(x) \ge \mu$. We shall now show that $\overline{M}(x) = \mu$ defines an extension of M to the subsemi-group H' determined by H and $\{x\}$ which satisfies (i)-(iii). This done, the existence of an extension to G follows from Zorn's Lemma.

Let $y+n_1x+h_1=n_2x+h_2$, $n_i \ge 0$. Claim:

(iv) $N^*(y)\mu^{n_1}M(h_1) \ge \mu^{n_2}M(h_2)$.

Because G has cancellation, we can take $n_1 = 0$ or $n_2 = 0$. If both are zero, (iv) follows from (iii). If $n_1 \ge 1$, $n_2 = 0$,

$$\mu^{n_1} \geq M(y + n_1 x + h_1)/N^*(y)M(h_1).$$

This is precisely (iv). The case $n_2 > 0$ follows:

Let $y_1 + h_1 = n_2 x + h_2$ and $y_3 + n_3 x + h_3 \in H$. In (iv) we replace μ by $\{ M(y_3 + n_3 x + h_3) / N^*(y_3) M(h_3) \}^{1/n_3}$:

$$N^*(y_1)M(h_1) \geq \left\{ M(y_3 + n_3x + h_3)/N^*(y_3)M(h_3) \right\}^{n_2/n_3}M(h_2)$$

$$\Leftrightarrow N^*(n_3y_1)N^*(n_2y_3)M(n_3h_1 + n_2h_3)$$

$$\geq M(n_2y_3 + n_2n_3x + n_2h_3 + n_3h_2).$$

But

$$n_2h_3 + n_2y_3 + n_2n_3x + n_3h_2 = n_2h_3 + n_2y_3 + n_3(y_1 + h_1)$$

= $(n_2h_3 + n_3h_1) + (n_3y_1 + n_2y_3)$.

Hence

$$M(n_3h_2 + n_2y_3 + n_2n_3x + n_2h_3) \leq M(n_2h_3 + n_3h_1)N^*(n_3y_1)N^*(n_2y_3).$$

Since y_3 , n_3 , h_3 were arbitrary, we can pass to the supremum to obtain μ in (iv).

Now suppose $n_1x + h_1 = n_2x + h_2$, $n_i \ge 0$. For every positive integer m,

$$m(n_1 + 1)x + mh_1 = m(n_2 + 1)x + mh_2.$$

$$x + (mn_1 + m - 1)x + mh_1 = m(n_2 + 1)x + mh_2.$$

If we apply (iv) to this, taking x=y, and let $m\to\infty$, we obtain $M(h_1)\mu^{n_1} \ge M(h_2)\mu^{n_2}$. From this it follows that if we set $\overline{M}(x) = \mu$ on the subsemi-group $H' = \{H+nx; n\ge 0\} \cup \{nx; n\ge 1\}$ \overline{M} is well-defined and multiplicative. The claim that \overline{M} and H' satisfy (iii) is essentially contained in (iv).

To remove the restriction imposed by assuming (A), let $B = \{x; y+x \in H, M(y+x) > 0, \text{ for some } y \text{ in } G\}$. Almost by definition, (A) holds in the subsemi-group B. Let \overline{M}_B be an extension of M, on $H \cap B$.

The complement CB is an ideal in G, that is, $G+CB\subseteq CB$. We define $\overline{M}\equiv 0$ on CB. Since M=0 on $H\cap CB$, \overline{M} as defined now on all of G is the desired extension.

REFERENCE

1. K. A. Ross, A note on extending semicharacters to semigroups, Proc. Amer. Math. Soc. 10 (1959), 579-583.

YALE UNIVERSITY