TWO ELEMENTARY THEOREMS ON THE
INTERPOLATION OF LINEAR OPERATORS!

RICHARD O’NEIL

Both theorems have to do with functions satisfying Hoélder condi-
tions.

DEFINITION. Let T be an operator which takes functions whose do-
main is n-space into functions whose domain is a metric space. T
will be said to be of Halder type (a, 8) norm N if for g=T¥,

| f(x) — f(x — k)| < A|k|* for all x and £,
implies
| g(w) — g(v)| < NA|u— v|f forall wandys.

(Throughout this paper, when dealing with a metric space we shall
denote the distance between % and v by |4 —v|.)

THEOREM 1. Suppose that 0=ay=a1 =1, 3¢20, 5120 and that T is

a linear operator taking functions whose domain is n-space into func-
tions whose domain is a metric space. If T is simultaneously of Holder
type (oo, Bo) norm Ny and of Hilder type (au, B1) norm Ny and if
0=<t=1, then T is of Hilder type (a, 8) norm N where

a=a = a(l — 1) + o,

B =B = Bo(1 — 1)+ Bu,

N < R.No 'Ni,

and where R, depends only on the dimension of n-space.
Proor. Without loss of generality we may assume
|7@) —f@—m)| = | 4]~

We first prove the theorem in case the domain of f is the real line,
that is when n=1.

For >0, let
1r — |s|/r if |s] <v,
0 if [s] =7

K.(s) = {

Then
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fK,(s) ds = j:.K'K,.(s) ds =1,
fK,’ (s)ds =0,
and,

f | K!(s)| ds = 2/r.

Let

5o = [ 1= 9Ky ds = [ fORo(x — 5)as
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Let e.(x) =f(x) —f.(x), g=Tf, g.=Tf,, and 5,=Te. Then g=g,+,

by linearity of T.

fi(x) = ff(s)K{ (x—s)ds = ff(x — 5)K/] (s) ds
= [ G -9 - @KL s

£ ) | gf'

L]

| | flx — s) — f(2) | |K! () | ds < r2(2/7) = 211,
<r

Case 1. | k| <r.
1@ = fe=B)| = | k] sup | 7 G)| s 2] n]r
= 2| k|a| eyt < 2| B|apea,
Case 2. | k| .
1) = 1w = )| = | [ =9 - e~ b~ NKi(5)as
< |hle= [hl=|bl== < | hlor=e,
In either case, f, satisfies a Hélder condition of order o, indeed,
| 7:@) = Jos = B) | S 2| |,

Thus, _
| &) — ()| < Na2r=1| 0w — o,
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o) = @) = 140 = [ (@) = jx = K05 ds.

«@| s [ Jslmasr

Case 1. |h| =7.
I &%) — e(x — h)l < 2t £ 21““’0[ hl“O.
Case 2. || <.
lee(®) — «(x = B)| = [f@) —f@ = B)| + |f(=) = fulx = ) |
< [hle+ | h]= < 2]k |woree.
Thus e, satisfies a Hélder condition of order ag. Therefore,
| 1:8) = m.(0)| < No2reeo| e — ols.
Thus, if we set 7= (Ny|u—v|fF/ No)l h=ey),
lew) — g | = | gw) — &) | + | 9.() — 2.() |
2Ny | u — o]+ 2Ngre—oo | 4 — o |0

4Ny 'Ni|w — ofp.

A 1A

This proves the theorem when the domain of f is one dimensional.
For n>1, the case n =2 is already sufficiently general to illustrate the

proof. In this case we let
Kos) = {3/11-1'2 — 3| s| /ar® ?f |s| <,
0 if Isl =r.

For a given h= (h, hy) #0, let /30 denote directional differentiation
in the direction 6 = h/|k|. Then [(3/30)K.(s)ds vanishes and
J](8/86)K.(s)|ds=0(1/r). Thus,

| (39/08) fo(x) | < | f(& — 5) — f(x) | |(0/96)K.(s) | ds
[s|<r

r0(1/r) = O(r=).
Therefore, if 0<|k| <r,0=h/|h|,

| fo(x) = fole — B)| < | 1| sup | (8/80)f.(9)| = | k| OG=)

A

= O(| h|are—a).

The rest of the proof goes through as before.
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DEFINITION. An operator 7 is said to take LP into Lip a with norm
N if for g=TJ¥,
| gw) — g | = N“f”,.l u — v|* for all % and v.

If f is a measurable function and y>0, let

m(f, ) = m(| f| , y) = measure of {x: | f(x)| > 3}.

It is easily shown that

J i@ la = [ ni

Furthermore, for p>0,
m(|f|?, y) = meas{x:| f(x) |7 > y}
= meas{x:| f(x) | > y''*} = m(/, y!'?).
Thus,

Al = [ 11las = [ “mcl 11,0 ao

= f m(f, v!/?) dv = p f m(f, y)y*! dy.
0 0

Given k=0, let
e if |f()]| <&
ﬁw_th)iHMH>k
and let

f@) = f(2) = fi(=).

THEOREM 2. Suppose that 0 <po<p1 < ©, =0, cu =0, and that T
is a linear operator taking measurable functions on a measure space into
functions whose domain is a metric space. If T simultaneously takes
L™ into Lip oo with norm N, and L™ into Lip cu with norm Ny and if
0=t=<1, then T takes L’ into Lip o with norm N where

p=1/pe= (1 = 0)/po+ t/p1,
a=a = (1 — ay + o,
—t 1-t ¢t

N < No Ny -0 < 2Ny 'V

(1t is to be remarked that 1/(1—1)'='t tends to 1 as t tends to 0 or 1.)
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Proor. Suppose, without loss of generality, that “ f|],,= 1. Fix k=0,
then f=f*+fi. Let g=Tf, go=Tf* and g1=Tfi, then g=go+g by
linearity of T.

(Il o) = 2o fo yo=im(ft, y) dy = po fo yo~im(f, y + k) dy
= — k)mim(f,2) dz = ~Im(f, z) d
Poj; (z — k)P~ 'm(f, 2) dz Poj; 27" Im(f, 2) dz

< pobos f w-im(f, 5) dz < (pokn—/9) (|11],)®

= pok??/p.
Thus [|f¥] 5 < (po/p) 7k '?/70; since T takes L into Lip ay with
norm N,

| go(w) — g0(2) | < No(po/p) 17ok=2/m | 4 — o e,

) k
(Ifllo)m = p1 fo ¥y im(f, y) dy = pa f yr'm(f, y) dy
0

k
< pikme f ¥ im(f, y) dy < prkPre/p.
[)

Thus H kapl_S_-(P1/p)””1kl_”“’x, and this last equation is valid even
if Pl = .

| g1(w) — g:(®) | < Nu(py/p)V/mkr—2im |y — v,

If we set A = 1/po — 1/p1, then 1/p — 1/py = A(1—t) and

1/po—1/p=At.
Thus, if we let

oA = (/1 — 1) (po/p)/7(p1/p) P (No/N1) | e — v e,
| gw) — g@)| = | go(w) — go@) | + | &1() — &1(®) |
= No(Pl/P)”""k—"‘l u—2 |°‘°
+ Na(py/p) 7ike40=0 | u — o]

1—¢ ¢t 1—-t/po

= No ‘Ny(1/£ (1 = ) ) (po/2)

t/m!u_vla

(1/9)
Let
B = (po/p)=91%(p1/p)!/m,

then
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log B = (1/p) log(1/p) — (1 — )(1/p0) log(1/pa) — 1(1/p1) log(1/#1).

But x log x is a convex function of x =0, so that

(1/9) log(1/p) = (1 — £)(1/po) log(1/po) + 1(1/p1) log(1/py).

Thus log B=<0, B=<1 and the theorem is established.

REMARRK. It is possible to strengthen the result of Theorem 2. We
shall say that a measurable function f belongs to weak L7 if there
exists a number A4 such that for all y>0,

m(f, y) = (4/9)*.
If fE L~ then f belongs to weak L?, since

(Ifll)? = 1’]; m(f, wur~' du = Pj;ym(f, w)ur! du

) f WL du = m(f, y)yr.

Thus,
m(f, 3) < (Ifllo/9)7.
We shall say that a function fELip « if for all « and v,
|7@) —f&) | = 4] — o]~
We shall say f€Lip « if
| f) = J@) | = o(] u = v]2)

as |u—v| tends to zero or infinity.

1°. Under the hypotheses of Theorem 2, T takes weak L* into
Lip a if po<p <pr.

2°. Under the hypotheses of Theorem 2, T takes L? into Lip « if

po<p<p1
To prove 1°, we suppose that m(f, ¥) <1/y?. Then

(170 = ?of s~'m(f, 2) dz = (po/p — po)km,
k
“fk”m = (Po/? - ﬁo)”l’okl—plm.
Similarly,

”fk”m = (py/p1 — p)Vmki—rim,
Thus, if we let
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kA = (No/Ny) | u — oo,
I g(u) — g(v) l = N:)~‘Nt1| % — vla{(po/p — Po)llp" + (pr/p1 — p)l/Pl} .

To prove 2°, we observe that

Il = fo " (s, 0119) do,

Since m(f, v1/?) is a monotone function of v, the finiteness of the
integral implies

m(f, v}/?) = 0(1/v) as v tends to zero or infinity.

Thus,
m(f, ¥) = o(1/y?) as y tends to zero or infinity.
Therefore,
[l /¥l oy = o(k*—#'m) as & tends to zero or infinity,
and
”fk”m = o(k'-?/m) as k tends to zero or infinity.

Again we may let
kP4 = (No/Ny) | u — v|eo—a,
Thus,
| g) — g@)| = o(| u = v]*).
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