TWO ELEMENTARY THEOREMS ON THE INTERPOLATION OF LINEAR OPERATORS¹

RICHARD O'NEIL

Both theorems have to do with functions satisfying Hölder conditions.

DEFINITION. Let T be an operator which takes functions whose domain is n-space into functions whose domain is a metric space. T will be said to be of $H\ddot{o}lder\ type\ (\alpha, \beta)\ norm\ N$ if for g = Tf,

$$|f(x) - f(x - h)| \le A |h|^{\alpha}$$
 for all x and h,

implies

$$|g(u) - g(v)| \le NA |u - v|^{\beta}$$
 for all u and v .

(Throughout this paper, when dealing with a metric space we shall denote the distance between u and v by |u-v|.)

THEOREM 1. Suppose that $0 \le \alpha_0 \le \alpha_1 \le 1$, $\beta_0 \ge 0$, $\beta_1 \ge 0$ and that T is a linear operator taking functions whose domain is n-space into functions whose domain is a metric space. If T is simultaneously of Hölder type (α_0, β_0) norm N_0 and of Hölder type (α_1, β_1) norm N_1 and if $0 \le t \le 1$, then T is of Hölder type (α, β) norm N where

$$\alpha = \alpha_t = \alpha_0(1 - t) + \alpha_1 t,$$

$$\beta = \beta_t = \beta_0(1 - t) + \beta_1 t,$$

$$N \leq R_n N_0^{1-t} N_1^t,$$

and where R_n depends only on the dimension of n-space.

PROOF. Without loss of generality we may assume

$$|f(x) - f(x - h)| \leq |h|^{\alpha}$$
.

We first prove the theorem in case the domain of f is the real line, that is when n=1.

For r > 0, let

$$K_r(s) = \begin{cases} 1/r - |s|/r^2 & \text{if } |s| < r, \\ 0 & \text{if } |s| \ge r. \end{cases}$$

Then

Presented to the Society, January 23, 1964 under the title *Interpolation of operators for Lip spaces*; received by the editors October 16, 1963.

¹ This research was supported by the Air Force Office of Scientific Research.

$$\int K_r(s) ds = \int_{|s| < r} K_r(s) ds = 1,$$

$$\int K'_r(s) ds = 0,$$

and,

$$\int |K'_r(s)| ds = 2/r.$$

Let

$$f_r(x) = \int f(x-s)K_r(s) ds = \int f(s)K_r(x-s) ds.$$

Let $\epsilon_r(x) = f(x) - f_r(x)$, g = Tf, $g_r = Tf_r$, and $\eta_r = T\epsilon_r$. Then $g = g_r + \eta_r$ by linearity of T.

$$f'_{r}(x) = \int f(s)K'_{r}(x-s) ds = \int f(x-s)K'_{r}(s) ds$$
$$= \int (f(x-s) - f(x))K'_{r}(s) ds.$$

$$\left|f_r'(x)\right| \leq \int_{|s| < r} \left|f(x-s) - f(x)\right| \left|K_r'(s)\right| ds \leq r^{\alpha}(2/r) = 2r^{\alpha-1}.$$

Case 1. |h| < r.

$$|f_r(x) - f_r(x - h)| \leq |h| \sup_{y} |f'_r(y)| \leq 2|h| r^{\alpha - 1}$$
$$= 2|h|^{\alpha_1}|h|^{1 - \alpha_1} r^{\alpha - 1} \leq 2|h|^{\alpha_1} r^{\alpha - \alpha_1}.$$

Case 2. $|h| \ge r$.

$$\left| f_r(x) - f_r(x - h) \right| = \left| \int (f(x - s) - f(x - h - s)) K_r(s) \, ds \right|$$

$$\leq \left| h \right|^{\alpha} = \left| h \right|^{\alpha_1} \left| h \right|^{\alpha - \alpha_1} \leq \left| h \right|^{\alpha_1} r^{\alpha - \alpha_1}.$$

In either case, f_r satisfies a Hölder condition of order α_1 , indeed,

$$|f_r(x) - f_r(x-h)| \leq 2r^{\alpha-\alpha_1}|h|^{\alpha_1}.$$

Thus,

$$|g_r(u)-g_r(v)| \leq N_1 2r^{\alpha-\alpha_1}|u-v|^{\beta_1}$$

$$\epsilon_r(x) = f(x) - f_r(x) = \int (f(x) - f(x - s)) K_r(s) ds.$$

$$\left| \epsilon_r(x) \right| \le \int_{|s| < r} \left| s \right|^{\alpha} K_r(s) ds \le r^{\alpha}.$$

Case 1. $|h| \ge r$.

$$|\epsilon_r(x) - \epsilon_r(x-h)| \leq 2r^{\alpha} \leq 2r^{\alpha-\alpha_0} |h|^{\alpha_0}.$$

Case 2. |h| < r.

$$\left| \epsilon_r(x) - \epsilon_r(x-h) \right| \leq \left| f(x) - f(x-h) \right| + \left| f_r(x) - f_r(x-h) \right|$$

$$\leq \left| h \right|^{\alpha} + \left| h \right|^{\alpha} \leq 2 \left| h \right|^{\alpha_0 r^{\alpha-\alpha_0}}.$$

Thus ϵ_r satisfies a Hölder condition of order α_0 . Therefore,

$$|\eta_r(u) - \eta_r(v)| \leq N_0 2r^{\alpha-\alpha_0} |u - v|^{\beta_0}.$$

Thus, if we set $r = (N_1 | u - v | \beta_1 - \beta_0 / N_0)^{1/(\alpha_1 - \alpha_0)}$,

$$\begin{aligned} |g(u) - g(v)| &\leq |g_{r}(u) - g_{r}(v)| + |\eta_{r}(u) - \eta_{r}(v)| \\ &\leq 2N_{1}r^{\alpha - \alpha_{1}}|u - v|^{\beta_{1}} + 2N_{0}r^{\alpha - \alpha_{0}}|u - v|^{\beta_{0}} \\ &= 4N_{0}^{1-t}N_{1}^{t}|u - v|^{\beta}. \end{aligned}$$

This proves the theorem when the domain of f is one dimensional. For n > 1, the case n = 2 is already sufficiently general to illustrate the proof. In this case we let

$$K_r(s) = \begin{cases} 3/\pi r^2 - 3 \mid s \mid /\pi r^3 & \text{if } \mid s \mid < r, \\ 0 & \text{if } \mid s \mid \ge r. \end{cases}$$

For a given $h = (h_1, h_2) \neq 0$, let $\partial/\partial\theta$ denote directional differentiation in the direction $\theta = h/|h|$. Then $\int (\partial/\partial\theta)K_r(s) ds$ vanishes and $\int |(\partial/\partial\theta)K_r(s)|ds = O(1/r)$. Thus,

$$\left| \left(\frac{\partial}{\partial \theta} \right) f_r(x) \right| \leq \int_{|s| < r} \left| f(x - s) - f(x) \right| \left| \left(\frac{\partial}{\partial \theta} \right) K_r(s) \right| ds$$

$$\leq r^{\alpha} O(1/r) = O(r^{\alpha - 1}).$$

Therefore, if 0 < |h| < r, $\theta = h/|h|$,

$$\left| f_r(x) - f_r(x - h) \right| \leq \left| h \right| \sup_{y} \left| (\partial/\partial \theta) f_r(y) \right| = \left| h \right| O(r^{\alpha - 1})$$
$$= O(\left| h \right|^{\alpha_1} r^{\alpha - \alpha_1}).$$

The rest of the proof goes through as before.

DEFINITION. An operator T is said to take L^p into Lip α with norm N if for g = Tf,

$$|g(u) - g(v)| \le N||f||_p |u - v|^{\alpha}$$
 for all u and v .

If f is a measurable function and y>0, let

$$m(f, y) = m(|f|, y) = \text{measure of } \{x: |f(x)| > y\}.$$

It is easily shown that

$$\int |f(x)| dx = \int_0^\infty m(f, y) dy.$$

Furthermore, for p > 0,

$$m(|f|^p, y) = \max\{x: |f(x)|^p > y\}$$

= $\max\{x: |f(x)| > y^{1/p}\} = m(f, y^{1/p}).$

Thus,

1966]

$$(||f||_p)^p = \int |f(x)|^p dx = \int_0^\infty m(|f|^p, v) dv$$
$$= \int_0^\infty m(f, v^{1/p}) dv = p \int_0^\infty m(f, y) y^{p-1} dy.$$

Given $k \ge 0$, let

$$f_k(x) = \begin{cases} f(x) & \text{if } |f(x)| \leq k, \\ k \operatorname{sgn} f(x) & \text{if } |f(x)| > k, \end{cases}$$

and let

$$f^k(x) = f(x) - f_k(x).$$

THEOREM 2. Suppose that $0 < p_0 \le p_1 \le \infty$, $\alpha_0 \ge 0$, $\alpha_1 \ge 0$, and that T is a linear operator taking measurable functions on a measure space into functions whose domain is a metric space. If T simultaneously takes L^{p_0} into Lip α_0 with norm N_0 and L^{p_1} into Lip α_1 with norm N_1 and if $0 \le t \le 1$, then T takes L^p into Lip α with norm N where

$$1/p = 1/p_t = (1 - t)/p_0 + t/p_1,$$

$$\alpha = \alpha_t = (1 - t)\alpha_0 + t\alpha_1,$$

$$N \le N_0^{1-t} N_1^t / (1 - t)^{1-t} t^t \le 2N_0^{1-t} N_1^t.$$

(It is to be remarked that $1/(1-t)^{1-t}t^{t}$ tends to 1 as t tends to 0 or 1.)

PROOF. Suppose, without loss of generality, that $||f||_p = 1$. Fix $k \ge 0$, then $f = f^k + f_k$. Let g = Tf, $g_0 = Tf^k$ and $g_1 = Tf_k$, then $g = g_0 + g_1$ by linearity of T.

$$(||f^{k}||_{p_{0}})^{p_{0}} = p_{0} \int_{0}^{\infty} y^{p_{0}-1} m(f^{k}, y) \, dy = p_{0} \int_{0}^{\infty} y^{p_{0}-1} m(f, y+k) \, dy$$

$$= p_{0} \int_{k}^{\infty} (z-k)^{p_{0}-1} m(f, z) \, dz \leq p_{0} \int_{k}^{\infty} z^{p_{0}-1} m(f, z) \, dz$$

$$\leq p_{0} k^{p_{0}-p} \int_{k}^{\infty} z^{p-1} m(f, z) \, dz \leq (p_{0} k^{p_{0}-p}/p) (||f||_{p})^{p}$$

$$= p_{0} k^{p_{0}-p}/p.$$

Thus $||f^k||_{p_0} \leq (p_0/p)^{1/p_0} k^{1-p/p_0}$; since T takes L^{p_0} into Lip α_0 with norm N_0 ,

$$\begin{aligned} \left| g_0(u) - g_0(v) \right| &\leq N_0(p_0/p)^{1/p_0} k^{1-p/p_0} \left| u - v \right|^{\alpha_0}. \\ (\left| \left| f_k \right| \right|_{p_1})^{p_1} &= p_1 \int_0^\infty y^{p_1-1} m(f_k, y) \, dy = p_1 \int_0^k y^{p_1-1} m(f, y) \, dy \\ &\leq p_1 k^{p_1-p} \int_0^k y^{p-1} m(f, y) \, dy \leq p_1 k^{p_1-p}/p. \end{aligned}$$

Thus $||f_k||_{p_1} \le (p_1/p)^{1/p_1} k^{1-p/p_1}$, and this last equation is valid even if $p_1 = \infty$.

$$|g_1(u) - g_1(v)| \le N_1(p_1/p)^{1/p_1}k^{1-p/p_1}|u-v|^{\alpha_1}.$$

If we set $A = 1/p_0 - 1/p_1$, then $1/p - 1/p_1 = A(1-t)$ and $1/p_0 - 1/p = At$.

Thus, if we let

$$k^{pA} = (t/1 - t)(p_0/p)^{1/p_0}(p_1/p)^{-1/p_1}(N_0/N_1) | u - v |^{\alpha_0 - \alpha_1},$$

$$|g(u) - g(v)| \leq |g_0(u) - g_0(v)| + |g_1(u) - g_1(v)|$$

$$= N_0(p_1/p)^{1/p_0}k^{-pAt} | u - v |^{\alpha_0}$$

$$+ N_1(p_1/p)^{1/p_1}k^{pA(1-t)} | u - v |^{\alpha_1}$$

$$= N_0^{1-t}N_1^t(1/t^t(1-t)^{1-t})(p_0/p)^{1-t/p_0}(p_1/p)^{t/p_1} | u - v |^{\alpha}.$$

Let

$$B = (p_0/p)^{(1-t)/p_0}(p_1/p)^{t/p_1},$$

then

$$\log B = (1/p) \log(1/p) - (1-t)(1/p_0) \log(1/p_0) - t(1/p_1) \log(1/p_1).$$

But $x \log x$ is a convex function of $x \ge 0$, so that

$$(1/p)\log(1/p) \leq (1-t)(1/p_0)\log(1/p_0) + t(1/p_1)\log(1/p_1).$$

Thus $\log B \le 0$, $B \le 1$ and the theorem is established.

REMARK. It is possible to strengthen the result of Theorem 2. We shall say that a measurable function f belongs to weak L^p if there exists a number A such that for all y>0,

$$m(f, y) \leq (A/y)^p$$
.

If $f \in L^p$ then f belongs to weak L^p , since

$$(||f||_p)^p = p \int_0^\infty m(f, u) u^{p-1} du \ge p \int_0^y m(f, u) u^{p-1} du$$

$$\ge p m(f, y) \int_0^y u^{p-1} du = m(f, y) y^p.$$

Thus,

$$m(f, y) \leq (||f||_p/y)^p.$$

We shall say that a function $f \in \text{Lip } \alpha$ if for all u and v,

$$|f(u)-f(v)| \leq A |u-v|^{\alpha}$$

We shall say $f \in \text{Lip } \alpha$ if

$$|f(\mathbf{u}) - f(\mathbf{v})| = o(|\mathbf{u} - \mathbf{v}|^{\alpha})$$

as |u-v| tends to zero or infinity.

- 1°. Under the hypotheses of Theorem 2, T takes weak L^p into Lip α if $p_0 .$
- 2°. Under the hypotheses of Theorem 2, T takes L^p into Lip α if $p_0 .$

To prove 1°, we suppose that $m(f, y) \le 1/y^p$. Then

$$(||f^k||_{p_0})^{p_0} \leq p_0 \int_k^\infty z^{p_0-1} m(f, z) dz \leq (p_0/p - p_0) k^{p_0-p},$$
$$||f^k||_{p_0} \leq (p_0/p - p_0)^{1/p_0} k^{1-p/p_0}.$$

Similarly,

$$||f_k||_{p_1} \leq (p_1/p_1-p)^{1/p_1}k^{1-p/p_1}.$$

Thus, if we let

$$k^{pA} = (N_0/N_1) | u - v |^{\alpha_0 - \alpha_1},$$

$$\left| g(u) - g(v) \right| \leq N_0^{1-t} N_1^t \left| u - v \right|^{\alpha} \left\{ (p_0/p - p_0)^{1/p_0} + (p_1/p_1 - p)^{1/p_1} \right\}.$$

To prove 2°, we observe that

$$(||f||_p)^p = \int_0^\infty m(f, v^{1/p}) dv.$$

Since $m(f, v^{1/p})$ is a monotone function of v, the finiteness of the integral implies

$$m(f, v^{1/p}) = o(1/v)$$
 as v tends to zero or infinity.

Thus,

$$m(f, y) = o(1/y^p)$$
 as y tends to zero or infinity.

Therefore,

$$||f^k||_{p_0} = o(k^{1-p/p_0})$$
 as k tends to zero or infinity,

and

$$||f_k||_{p_1} = o(k^{1-p/p_1})$$
 as k tends to zero or infinity.

Again we may let

$$k^{pA} = (N_0/N_1) | u - v |_{\alpha_0 - \alpha_1}.$$

Thus,

$$|g(u) - g(v)| = o(|u - v|^{\alpha}).$$

REFERENCES

- 1. R. Fiorenza, Theoremi di interpolazione per transformazioni tra spazi di funzioni con derivate hölderiane, Ricerche Mat. 10 (1961), 282-298.
- 2. ——, Ulteriori risultati sulla interpolazione tra spazi di funzioni con derivate hölderiane, Richerche Mat. 11 (1962), 224-253.

RICE UNIVERSITY