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In this paper we give a necessary and sufficient condition in order

that the orbit of a point be a homeomorphic image of the phase group

in a transformation group.

The general reference for definitions is [2], Throughout this paper

iX, T, ir) will denote a transformation group for which X is a first

countable Hausdorff space. The phase group P will be assumed to be

generative, that is, T is isomorphic to CXPmX7"where Cis acompact

abelian group, R is the additive group of real numbers, 7 is the addi-

tive group of integers, and m and ra are non-negative integers [4].

P will denote a replete semigroup in P which is distinct from P. Let

EET, then E is P-extensive provided EC\pP^0 for each p in P.

Let xEX, then x is P-recurrent provided that for each neighborhood

U of x there exists a P-extensive set E in P such that if rEE then

xrEU [l]. For each xEX the isotropy subgroup Tx of x is the set of

all tET such that xt = x.

Lemma 1. If x is not P-recurrent for any replete semigroup P^T

then the isotropy subgroup Tx of x is a subgroup of the compact subgroup

ofT. That is, if T = CXRmXln then Px = ^x{o}x{o} where A EC.

Proof. For wET let w = (wi, w2, w3) where wiEC, w2ERm and

w3EIn- We assume that there exists an <z = (ai, a2, a3)ETx such that

not both a2 and a3 are zero. We consider first the case where a3^0.

That is, if a3=(a3(l), ^(2), • • • , <z3(ra)) then a3(j)^0 for some j.

Let P = CXB where B={(xi, ■ ■ • , xm+n)EPmX7»: xm+J-^2}. We

first observe that P is a semigroup of P and Pt^T.

To see that P is replete let K be a compact subset of P. Then there

exists a positive number r such that CXSir)Z/)K. (5(r) denotes the

sphere of radius r about the origin.) It therefore follows that

Kit/, 0, • • • , r + 4, 0, • • • , 0)

C [C X Sir)]ie', 0, • • • , r + 4, 0, • • • , 0) C P

where r+4 appears in the m+j+l position and e' denotes the iden-

tity in C. Thus P is a replete semigroup in P.

We now show that Tx is P-extensive. First, we observe that for

PEP the set pP = CXB' where

B' = {(*i, • • • , xm+n) E Rm X 7": xm+j ^ N}
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for some integer N. Also there exists an integer k such that ka3(j) >N.

Thus if we consider the element ka = (kai, ka2, ka3) we have kaiEC,

(ka2, ka3)EB' hence kaEpP- Also since Tx is a subgroup of P,

kaETx which implies that TxC\pP^0 for all pEP- Hence Tx is P-

extensive.

For each tET, xt = x. Therefore, if U is any open set containing

x then xTxEU which implies x is P-recurrent and is a contradiction.

The case where a2^0 can be handled in the same manner.

Theorem 1. A necessary and sufficient condition that the mapping

g: T—»0(x) by g(t)=xt be a homeomorphism is that the isotropy sub-

group Tx of T at x restricted to the compact group C is trivial and that

x is not P-recurrent for any replete semigroup P^T.

Proof. Assume that g: P—>0(x) is a homeomorphism. Since g is

one-to-one it follows that Tx is trivial. In order to show that x is not

P-recurrent for any replete semigroup of P we assume there exists

a replete semigroup P^T such that x is P-recurrent. Let { Un} be a

sequence of open sets such that x = R U„ and let An be the correspond-

ing P-extensive subsets of T.

Let U be an open subset of C which contains e', the identity of C,

and has the property that U^C. If 5 is a semigroup of P1 which

contains some interval containing zero then S = Rl. Thus, since

Pt^T, for some j there exists a number pj and an interval Uj contain-

ing zero such that if Pj is the projection of P onto the j-axis (j> 1)

then pjEPj and pjPir\Ui = 0. Let P=PXP1X • • • XUjX ■ ■ ■
X7„ and p = (xu • • ■ , pj, ■ ■ ■ , xm+n+i)EP. Then pPC\K = 0. Thus

since An(^\pP ^ 0 for all n we have^4„Pi { P — K} 9^0 for all integers

n. Let rnEAn—K for each n. Since DP„ = x it follows that lim,,.*, xr„

= xe = x. But since g is a homeomorphism this implies that lim^c r„

= e which is clearly impossible. Thus x is not P-recurrent for any

P^T.
We now assume that x is not P-recurrent for any replete semigroup

P^T. It follows from Lemma 1 that TXEC. But since Tx restricted

to C is trivial this means Tx= {(e1', 0, 0)}. This implies that the map-

ping g: P—»0(x) by g(t) =xt is one-to-one. Since (X, T, w) is a trans-

formation group it follows that g is continuous. We have only to show

that g-1 is continuous. In order to do this it is sufficient to show that

if limn _«, xtn = x then limn _„ t„ = e.

If this is not the case then either there exists a subsequence {t„ } of

{tn} and an a = (ait a2, a3)^(e', 0, 0) such that lim™,,*,^' =a or the

sequence {tn} intersects the set T— {CXS(r)} for all r>0, where

S(r) denotes the sphere of radius r about the origin in RmXln. If
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lim„„ tn' =a then, since w is continuous, it follows that xa—x which

is a contradiction since g is one-to-one.

In the second case let ti = (2,(1), • • • , ti{m + ra + 1)) where

(^(2), • ■ • , tiim+n + l)) ERmXln. For some/>l there exists a sub-

sequence of {tiij)} which converges either to positive or negative in-

finity. We consider the case where some subsequence of [tiij)} con-

verges to positive infinity and denote by t( the corresponding ele-

ments of {ti}. The case where some subsequence of {tiij)} converges

to negative infinity can be handled in the same manner. If we let

P = CXB where 73= {(xi, ■ ■ • , xm+n)ERmXln: */ = 2} then P is a

replete semigroup of P and {ti } is a P-extensive subset of P. It fol-

lows that x is P-recurrent, which is impossible.

We observe that if m = n = 0 then T=C. Since there are no replete

semigroups of P other than P itself the notion of P-recurrence is not

meaningful. In this case Theorem 1 reduces to the remarks found in

[3, p. 65].
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