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1. Let [qo, qi,q2, ■ • ■ J be a Kleene enumeration of partial recur-

sive functions. If / is such a function, denote by 9f its index set,

9f= {ra|g„^/}. Insofar as the indices of a partial recursive function

correspond to the different sets of "instructions" for computing its

values, it is natural to ask how much of the "complexity" of the

function is reflected by its index set; for example, one might expect

the index set of a constant total function to differ in a fundamental

way from that of a function whose domain and range are nonrecur-

sive sets. More precisely, since the basic equivalence relation of re-

cursion theory is recursive isomorphism (i.e., equivalence under a re-

cursive permutation of the nonnegative integers) the following ques-

tion arises: How many distinct recursive isomorphism types of index

sets are there, and which properties of the corresponding functions

can be used to characterize these types? This is answered in the theo-

rem below. That the answer is independent of any particular enu-

meration follows from the fact, proved by Rogers in [S], that differ-

ent "standard-type" enumerations are related by means of recursive

permutations.

In the following, function will mean partial recursive function and

degree will mean Turing degree of unsolvability. We write a7?i/3 for

a is 1-1 reducible to /3 and a=/3 for a is recursively isomorphic to j3. The

notation is that of [3], but the technique will be informal in character.

Theorem 1. There are exactly three isomorphism types of index sets

of partial recursive functions, and the type of df is uniquely determined

by whether the domain of f is null, finite or infinite. In the first two cases,

df has degree 0', in the last case degree 0".

The proof follows from several lemmas.

Lemma 1. Let f, g be finite, nonvoid functions. Then 0/=0g.

Proof. Assume/= {(<z0, b0), ■ ■ ■ , iap, bp)} and g= {(x0, y0), • ■ • ,

ixm, y™)} • Let xm+i be distinct from x0, • • • , xm. Using standard

techniques, define a 1-1 recursive function A by

qh(.n)ixt) = y<    for 0 ^ i ^ m if g„(oy) = b, for 0 ^ / ^ p,
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qh(.n)(xm+i) = 0    if qn(ai) = bj for 0 g j ^ p and qn(x) is defined

for some ifj [a0, ■ ■ ■ , ap],

?B(B)(*) undefined otherwise.

(We note here for future reference that for all n, either qh(,n) = 0Qg

or qhM extends g.)

Then

h(n) G 8g++ 9B(B)(*i)  =  y% for 0 ^ i ^ m and <?B(B)(x) is undefined

for all x G {*o, • • ■ , *m}

<_> ?B(a>) = ^i f°r 0 ^ / ^ p and <?B(x) is undefined for all

* G \ao, ■ • • , ap}

<-*nt=6f.

So 0/ is 1-1 reducible to Og. By symmetry, dgRidf, which by Myhill's

theorem [4] implies 0/=0g.

Lemma 2. Assume qe has an infinite domain, and let a be any set

whose defining predicate can be written in AE form in the arithmetic

hierarchy. Then a is 1-1 reducible to 6qe.

Proof. This was shown for the case where qe is total by Shapiro in

[6]. His argument easily generalizes to functions with arbitrary in-

finite domains, as follows: Assume that «G« — (z)(Ey)R(n, z, y) for

a recursive P. Now define a recursive function d by

q<i(n)(z) = the zth number x for which qn(x) is computed in some

simultaneous computation of all values of q„.

Then qd(e) is clearly total if domain qe is infinite, and range qiM

= domain qe. Now define a 1-1 recursive function h by

?B(B)(x) = qe(x)    if (Ey)(Ez)(x = qdie)(z) A P(», z, y)),

Qi>m(x)    undefined otherwise.

(We again note, for future reference, that qe extends g,n(n) for each n.)

Then

ti£a« (z)(Ey)R(n, z, y) *-*■ domain qhM C domain qe and

(x)[x G domain qe 3 (Ez)(x = qd(e)(z) A (Ey)R(n, z, y))]

<-> qhM ~qe<H> h(n) G 0qe. So aRi6qe.

It is evident that a Godel number of h can be computed, uniformly

in e and a Godel number of P, although we shall not use this fact.
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Lemma 3. For any e, the defining predicate of 9qe can be written in AE

form in the arithmetic hierarchy.

Proof.

nEBq.^* iz)[iEy)Tiie, z, y) A iEy)Tiin, z, y) A U^yTiie, z, y))

= UfayTiin, z, y)). V .(y)<r\Tiie, z, y) A ~\Ti(n, z, y)]

~ iz)iEy)[Tiie, (z)h (y)i) A T^n, (z)i, (y)2) A £/((y)i)

= U0y)2). V.~]ri(e, (z)i, WO A ~lri(», (z)„ (f)0]

where the scope of the quantifiers is a recursive predicate.

Proof of theorem. Let 0 denote the null function, and let T0

be the isomorphism type containing 00. Let 7\ be the isomorphism

type of df where/ is any finite nonvoid function; this is well defined

by Lemma 1. That To^Ti follows from the fact that (00)' is re-

cursively enumerable while, as shown in [l], (0/)' is productive for

any f¥L0. Since id0)' is creative, it follows from [4] that degree

(00) =degree (00)'=0'. By an argument of [l] (given there for sets

rather than functions), if /is any finite function, degree 0/ = O'. Now

if / and g are any two functions with infinite domains, it follows from

Lemmas 2 and 3 that 0/7?i0g and 0g7?i0/, so that df^Bg. It also follows

from those lemmas that these sets are of degree 0", so that if T2 de-

notes their isomorphism type, T2 is distinct from both T0 and TV

It may further be noted that if, for a recursively enumerable (r.e.)

set a, da denotes {ra|a=wn = range qn}, then the reduction pro-

cedures of Lemmas 1 and 2 can (with minor modifications) be used

to show that the isomorphism type of da is uniquely determined by

whether a is null, finite or infinite, and that in fact that three possible

types of 0a are exactly those of Theorem 1. In particular, all infinite

r.e. sets, independently of their degree of unsolvability, have recur-

sively isomorphic index sets.

2. In [2], it is shown that if /, g are partial recursive functions

neither of which extends the other, the pair of index sets (0/, 0g)

possesses the property of inducing double creativity of any pair

(a, fa of disjoint r.e. sets such that dfCct, dgCfa It is then relevant to

inquire how many such pairs of index sets there are, up to double iso-

morphism (i.e., simultaneous isomorphism under a single recursive

permutation). This is answered by the theorem below.

Definition 1. A partial recursive function has type 0, 1 or 2 ac-

cording as its domain is null, finite or infinite. The type of / will be

denoted by T(J).
Definition 2. Functions /, g will be called comparable if one ex-

tends the other; otherwise, / and g are incomparable.
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Proposition 1. For any pair f, g of partial recursive functions, there

exist disjoint r.e. sets a and /? with 0/Ccc, 0gC/3 if and only iff and g are

incomparable.

Proof. This is a special case of Theorems 4.1 and 4.2 of [l].

Theorem 2. Let f0, fi be incomparable functions. Then (0/o, 0/i) is

doubly isomorphic to (0go, 0gi) if and only if the following conditions

hold:

(1) T(fo) = P(go) and T(fi) = P(gi),
(2) go and gi are incomparable.

Proof. By Proposition 1, the incomparability of f0 and/i implies

the existence of disjoint r.e. sets /3o, ft with 0/oC/3O) dfiClfii. To prove

the necessity of the above conditions, assume that 7r is a recursive

permutation such that 7r(0/o) =0go and 7r(0/i) =0gi. Condition (1) then

follows from Theorem 1. Moreover, 6go=zir(6fo)QTr(fio) and 0gi

= 7r(0/i)C7r(/3i) where tt(($0), 7r(/3i) are disjoint r.e. sets, which by

Proposition 1 implies condition (2). To prove sufficiency, assume that

go, gi are incomparable, P(/o) = P(go), T(fi) = T(gi). For i = 0, 1 let

hi be the 1-1 recursive function which reduces 0/< to 0gt- provided by

the lemmas to Theorem 1; recall that, as noted above, these reduc-

tions have the property that for each n, gBi(B> is comparable to g,-.

Now define a 1-1 recursive function h by

?B(B)(*) ^ ?a0(«)(*)    if » G /So,

?MB)(*) ca qhl(*)(x)    if n G /Si,

?«(»)(*) undefined otherwise.

We note first that for i = 0, 1 we have

» G 6fi —» n G ft —» 9»cB) ̂ ?«,(»),

so that A(«) G0g»*-*^.(w) G0g<-  But by choice of ht,  n£E.9fi<->hi(n)
Gdgi. Thus nGQfi->Hn)eeg<.

Conversely, assume h(n)(E.6gi, i.e., <Z*c«>—£»• We then observe the

following:

(a) «G (/3o^7/30'-»g„(B) = 0—»g< = 0, which contradicts the hypoth-
esis that gi and gi_< are incomparable.

(b) wG/3i_,—>#Bl_,.(B)^gB(n)~gi. But as noted above, gBl_i(B) and

thus gi is comparable to gi_,-, which again contradicts the hypothesis.

We thus deduce that ft(w)G0g —^Gft- But n(Efii-+qhw^qh,w,
while $B,(B)^^g,<->wG0/.-. Together, these yield h(n)&gi—>wG0/i-

We have thus shown that 6fo = h~1(0go) and 0fi = h~1(6gi), i.e., that

A is a 1-1 reduction of the pair (0/o, 0/i) to (0go, 0gi). By symmetry of

the hypotheses, (0go, 0gi) is 1-1 reducible to (0/o, 0/i). So by Smull-
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yan's generalization [7] of Myhill's theorem, (0/o, 0/i) is doubly iso-

morphic to (0go, 0gi).

There are thus exactly three isomorphism types of pairs of index

sets of incomparable functions, corresponding to pairs of functions of

types (1, 1), (1, 2) and (2, 2). The situation for pairs of comparable

functions appears to be more complicated. We do not know condi-

tions which are both necessary and sufficient for double isomorphism

of such pairs of index sets.
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