REFERENCES

- 1. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
- 2. J. A. Green, A transfer theorem for modular representations, J. of Algebra 1 (1964), 73-84.
- 3. M. F. O'Reilly, On the semisimplicity of the modular representation algebra of a finite group, Illinois J. Math. 9 (1965), 261-276.
- 4. I. Reiner, The integral representation ring of a finite group, Michigan Math. J. 12 (1965), 11-22.

University of Illinois

NOTE ON ANALYTICALLY UNRAMIFIED SEMI-LOCAL RINGS

LOUIS J. RATLIFF, JR.1

All rings in this paper are assumed to be commutative rings with a unit element. If B is an ideal in a ring R, the integral closure B_a of B is the set of elements x in R such that x satisfies an equation of the form $x^n + b_1 x^{n-1} + \cdots + b_n = 0$, where $b_i \in B^i$ $(i = 1, \cdots, n)$. An ideal B in R is semi-prime in case B is an intersection of prime ideals. If R is an integral domain, then R is normal in case R is integrally closed in its quotient field. If R is a semi-local (Noetherian) ring, then R is analytically unramified in case the completion of R (with respect to the powers of the Jacobson radical of R) contains no nonzero nilpotent elements.

Let R be a semi-local ring with Jacobson radical J, and let R^* be the completion of R. In [2], Zariski proved that if R is a normal local integral domain, and if there is a nonzero element x in J such that $\mathfrak{p}R^*$ is semi-prime, for every prime divisor \mathfrak{p} of xR, then R is analytically unramified. In [1, p. 132] Nagata proved that if R is a semi-local integral domain, and if there is a nonzero element x in J such that, for every prime divisor \mathfrak{p} of xR, $\mathfrak{p}R^*$ is semi-prime and $R_{\mathfrak{p}}$ is a valuation ring, then R is analytically unramified. (The condition $R_{\mathfrak{p}}$ is a valuation ring holds if R is normal.) The main purpose of this note is to extend Nagata's result to the case where R is a semi-local ring (Theorem 1). This extension will be given after first proving a

Received by the editors March 29, 1965.

Work on this paper was supported in part by the National Science Foundation. Grant GP3595.

number of lemmas. Among these preliminary results, Lemma 3 gives a necessary and sufficient condition for $R_{\mathfrak{p}}$ to be a discrete Archimedian valuation ring (where R is a Noetherian ring and \mathfrak{p} is a prime divisor of a nonzero-divisor $b \in R$), Corollary 2 of Lemma 5 gives a sufficient condition for a Noetherian ring to be a direct sum of normal Noetherian domains, and Lemma 6 gives a characterization of analytically unramified semi-local rings.

In Lemmas 1-4 below, R is a Noetherian ring, S is the integral closure of R in its total quotient ring, b is a nonunit in R which is not a divisor of zero, $\mathfrak p$ is a prime divisor of bR, and $\mathfrak q$ is the isolated component of zero determined by $\mathfrak p$. If B is an ideal in R, then $B'R_{\mathfrak p}$ is the ideal generated by $(B+\mathfrak q)/\mathfrak q$ in $R_{\mathfrak p}$. Likewise, if $c\in R$, then c' is the $\mathfrak q$ -residue of c.

LEMMA 1. $(bR)_a = bS \cap R$, and an element c in R is in $(bR)_a$ if and only if $c/b \in S$.

PROOF. If $c \in (bR)_a$, then $c^n + b_1 c^{n-1} + \cdots + b_n = 0$, where $b_i \in b^i R$. Dividing this equation by b^n shows that $c/b \in S$, so $c \in bS \cap R$, hence $(bR)_a \subseteq bS \cap R$. If $c \in bS \cap R$, then $c/b \in S$, so $(c/b)^n + r_1(c/b)^{n-1} + \cdots + r_n = 0$, where $r_i \in R$. Multiplying this equation by b^n shows that $c \in (bR)_a$, since $c \in R$. Therefore $bS \cap R \subseteq (bR)_a$, hence $(bR)_a = bS \cap R$, q.e.d.

LEMMA 2. R_p is a discrete Archimedian valuation ring if and only if R_p is normal.

PROOF. If $R_{\mathfrak{p}}$ is a valuation ring, then $R_{\mathfrak{p}}$ is normal. Conversely, if $R_{\mathfrak{p}}$ is normal, then $R_{\mathfrak{p}}$ is a normal local integral domain (hence, the kernel of the natural homomorphism from R into $R_{\mathfrak{p}}$, which is \mathfrak{q} , is a prime ideal), and $\mathfrak{p}'R_{\mathfrak{p}}$ is a prime divisor of $b'R_{\mathfrak{p}}$. Since $b'R_{\mathfrak{p}} \neq (0)$, height $\mathfrak{p}'R_{\mathfrak{p}} = 1$ hence $R_{\mathfrak{p}}$ is a discrete Archimedian valuation ring [3, pp. 276–278], q.e.d.

An element $c \in R$ such that $bR: cR = \mathfrak{p}$ is used in the next lemma. Such an element can be found as follows. Let $\mathfrak{p} = \mathfrak{p}_1, \mathfrak{p}_2, \cdots, \mathfrak{p}_n$ be the prime divisors of bR, and let d be an element in the \mathfrak{p}_i -primary component of bR $(i=2,\cdots,n)$ which is not in bR. If $bR: dR \neq \mathfrak{p}$, let e be an element in $(bR:dR):\mathfrak{p}R$ which is not in bR:dR, and let c=de.

LEMMA 3. Let c be an element in R such that $bR:cR=\mathfrak{p}$. $R_{\mathfrak{p}}$ is normal if and only if $c/b \in S$.

PROOF. Let $R_{\mathfrak{p}}$ be normal. Since $bR:cR=\mathfrak{p}$, $b'R_{\mathfrak{p}}:c'R_{\mathfrak{p}}=\mathfrak{p}'R_{\mathfrak{p}}$. Therefore $c' \in b'R_{\mathfrak{p}}$, so $c'/b' \in R_{\mathfrak{p}}$. Hence, since $S_{R \sim \mathfrak{p}}$ is contained in the integral closure of $R_{\mathfrak{p}}$ in its quotient field, $c/b \in S$. Conversely,

assume $c/b \notin S$. Since $c\mathfrak{p} \subseteq bR$, $(c/b)\mathfrak{p} \subseteq R$. If $(c/b)\mathfrak{p} \subseteq \mathfrak{p}$, then $bR[c/b] \subseteq \mathfrak{p}R[c/b] \subseteq R$, so R[c/b] is contained in the finite R-module (1/b)R, hence $c/b \in S$. This is a contradiction, so $c\mathfrak{p} \nsubseteq b\mathfrak{p}$. Therefore, there are elements $d \in \mathfrak{p}$, and $x \in R$, $\notin \mathfrak{p}$, such that cd = bx. Then $b'R_{\mathfrak{p}} = b'x'R_{\mathfrak{p}} = c'd'R_{\mathfrak{p}} \subseteq c'\mathfrak{p}'R_{\mathfrak{p}} \subseteq b'R_{\mathfrak{p}}$, so $c'\mathfrak{p}'R_{\mathfrak{p}} = b'R_{\mathfrak{p}} = c'd'R_{\mathfrak{p}}$. Now c' is not a divisor of zero in $R_{\mathfrak{p}}$ (since b'x' is not), so $\mathfrak{p}'R_{\mathfrak{p}} = (b'/c')R_{\mathfrak{p}}$, hence $R_{\mathfrak{p}}$ is normal (Lemma 2, and [3, p. 277]), q.e.d.

LEMMA 4. $(bR)_a = bR$ if and only if R_p is normal, for every prime divisor p of bR.

PROOF. If $R_{\mathfrak{p}}$ is normal, for every prime divisor \mathfrak{p} of bR, then $R_{\mathfrak{p}} = S_{R \sim \mathfrak{p}}$, so $\mathfrak{p}'R_{\mathfrak{p}} \cap S$ is a prime divisor of bS. Let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be the prime divisors of bR, and let b_i be the image of b in $R_{\mathfrak{p}_i}$. Then $(bR)_a = bS \cap R$ (Lemma 1) $\subseteq (\bigcap_{1}^{n} (b_i R_{\mathfrak{p}_i} \cap S)) \cap R = \bigcap_{1}^{n} (b_i R_{\mathfrak{p}_i} \cap R) = bR \subseteq (bR)_a$, hence $(bR)_a = bR$. Conversely, let $(bR)_a = bR$, let \mathfrak{p} be a prime divisor of bR, and let c be an element in R such that $bR: cR = \mathfrak{p}$. Then $c/b \notin R$. If $R_{\mathfrak{p}}$ is not normal, then $c/b \in S$ (Lemma 3), hence $c \in bS \cap R = (bR)_a$ (Lemma 1). Since $(bR)_a = bR$, this is a contradiction to $c/b \notin R$. Therefore $R_{\mathfrak{p}}$ is normal, q.e.d.

LEMMA 5. Let R be a Noetherian ring with Jacobson radical J, let b be a nonzero element in J, and let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be the prime divisors of bR. If $R_{\mathfrak{p}_i}$ is a discrete Archimedian valuation ring $(i=1, \dots, n)$, then the isolated component of zero contained in \mathfrak{p}_i is a prime ideal \mathfrak{q}_i and $\bigcap_{i=1}^n \mathfrak{q}_i = (0)$. Moreover, b is not a zero-divisor in R, and $(bR)_a = bR$.

PROOF. If $R_{\mathfrak{p}_i}$ is a discrete Archimedian valuation ring, then $R_{\mathfrak{p}_i}$ is an integral domain which is not a field, so the isolated component of zero contained in \mathfrak{p}_i is a prime ideal \mathfrak{q}_i . Since \mathfrak{q}_i is the kernel of the natural homomorphism from R into $R_{\mathfrak{p}_i}$, \mathfrak{q}_i is contained in every \mathfrak{p}_i -primary ideal. Hence, since $bR = \bigcap_{1}^{n} (b_i R_{\mathfrak{p}_i} \cap R)$, where b_i is the \mathfrak{q}_i -residue of b, and since each \mathfrak{p}_i is a minimal prime divisor of bR, $Z = \bigcap_{1}^{n} \mathfrak{q}_i \subseteq bR$. Since $b \notin \mathfrak{q}_i$ $(i=1, \dots, n)$, Z:bR = Z. This implies $Z = bR \cap (Z:bR) = b(Z:bR)$. Therefore, since $b \in J$, $Z = b(Z:bR) = bZ \subseteq JZ \subseteq Z$. Hence, $Z = \bigcap_{1}^{n} J^h Z \subseteq \bigcap_{1}^{n} J^h = (0)$. Thus b is not a zero-divisor, so $(bR)_a = bR$ (Lemma 4), q.e.d.

COROLLARY 1. With the same R and J of Lemma 5, suppose there is a nonzero nilpotent element in R. If b is a nonzero divisor in J, then $(bR)_a \neq bR$.

PROOF. If b is a nonzero-divisor in J such that $(bR)_a = bR$, then $R_{\mathfrak{p}}$ is a discrete Archimedian valuation ring, for every prime divisor \mathfrak{p} of bR (Lemma 4). Hence by Lemma 5, the zero ideal in R is semi-prime, q.e.d.

Corollary 4 below is the next result which is needed to prove Theorem 1, and it can be proved as a corollary to Lemma 5. Corollaries 1, 2, and 3, and Lemma 6 are not used in the proof of Theorem 1. They are included at this point because they are of some interest in themselves.

COROLLARY 2. Let R be an integrally closed Noetherian ring, let J be the Jacobson radical of R, and let q_1, \dots, q_n be the minimal prime divisors of zero. If there is a nonzero-divisor b in J, then $R = \bigoplus_{i=1}^{n} R/q_i$, and R/q_i is a normal Noetherian domain.

PROOF. If b is a nonzero-divisor in J, then $(bR)_a = bR$, since R is integrally closed. Therefore by Corollary 1 the zero ideal in R is semi-prime, and consequently the total quotient ring Q of R is the direct sum of n fields. Since the idempotents in Q are integrally dependent on R, they are in R. This, and the fact that R is integrally closed, immediately imply the conclusions, q.e.d.

In Corollaries 3 and 4 and Lemmas 6 and 7, R is a semi-local ring with maximal ideals $M_1, \dots, M_d, J = \bigcap_{i=1}^d M_i$, and R^* is the completion of R.

COROLLARY 3. Assume that no M_i is a prime divisor of zero, and that R^* is integrally closed. Then the completion of each R_{M_i} is normal (hence R_{M_i} is a normal local domain).

PROOF. Since no M_i is a prime divisor of zero, there is a nonzero-divisor b in the Jacobson radical of R^* [4, p. 267]. Hence by Corollary 2, $R^* = \bigoplus R^*/\mathfrak{q}_i$, where \mathfrak{q}_i runs through the prime divisors of zero in R^* . Since the idempotents of the total quotient ring of R^* are in R^* , no maximal ideal in R^* contains more than one primed divisor of zero. Therefore, there are d prime divisors of zero in R^* , since R^*/\mathfrak{q}_i is a complete normal local domain. Let M_iR^* be the maximal ideal in R^* which contains \mathfrak{q}_i . Then it is immediately seen that $R^*_{M_iR^*} = R^*/\mathfrak{q}_i \supseteq R/(\mathfrak{q}_i \cap R) = R_{M_i}$. Since R_{M_i} is a dense subspace of R^*/\mathfrak{q}_i [4, p. 283], the completion of R_{M_i} is normal. It is well known [1, p. 59] that this implies that R_{M_i} is a normal local domain, \mathfrak{q} .e.d.

LEMMA 6. Let b be a nonzero-divisor in J, let $R^{*'}$ be the integral closure of R^{*} in its total quotient ring, and let $T = R^{*'} \cap R^{*}[1/b]$. If there is an integer n such that $b^{n}T \subseteq bR^{*}$, then R is analytically unramified. Conversely, if R is analytically unramified, then for every nonzero-divisor c in R there is an integer k (depending on c) such that $c^{k}(R^{*'} \cap R^{*}[1/c]) \subseteq cR^{*}$.

PROOF. Since b is not a divisor of zero in R, b is not a divisor of zero in R^* [4, p. 267], so R^* [1/b] is contained in the total quotient

ring Q of R^* . Let x be a nilpotent element in R^* . Then $x/b^i \in T$, for all $i \ge 1$. Therefore, if $b^n T \subseteq bR^*$, then $x \in b^i T \subseteq b^{i-n+1}R^* \subseteq J^{i-n+1}R^*$, for all $i \ge n$. Since $\bigcap J^i R^* = 0$, x = 0. Hence R is analytically unramified. Conversely, let R be analytically unramified and let $\mathfrak{q}_1, \dots, \mathfrak{q}_n$ be the prime divisors of zero in R^* . Then $R^{*'} = \bigoplus_{i=1}^n (R^*/\mathfrak{q}_i)'$, where $(R^*/\mathfrak{q}_i)'$ is the integral closure of R^*/\mathfrak{q}_i . Since $(R^*/\mathfrak{q}_i)'$ is a finite R^*/\mathfrak{q}_i module $[1, p. 112], R^{*'}$ is a finite R^* -module. Thus $R^{*'} \cap R^*[1/c]$ is a finite R^* -module, for every non-zero-divisor c in R. Hence, since every element in $R^{*'} \cap R^*[1/c]$ can be written in the form r/c^i , where $r \in (c^i R^*)_a$, the last statement is clear, q.e.d.

COROLLARY 4. With the same notation as Lemma 6, assume $(bR^*)_a = bR^*$. Then R is analytically unramified.

PROOF. If $t \in T$, then $t = r/b^j$, where $r \in (b^j R^*)_a$. Since bR^* and $b^j R^*$ have the same prime divisors, $(b^j R^*)_a = b^j R^*$ (Lemma 4). Therefore $T = R^*$, hence $bT = bR^*$, and so R is analytically unramified by Lemma 6, q.e.d.

LEMMA 7. Let \mathfrak{p} be a height one prime ideal in R. If $R_{\mathfrak{p}}$ is normal, and if $\mathfrak{p}R^* = \bigcap_{i=1}^{n} \mathfrak{p}_{i}^*$, where each \mathfrak{p}_{i}^* is a prime ideal in R^* , then each $R_{\mathfrak{p}_{i}^*}^*$ is normal, and $\mathfrak{p}^{(n)}R^* = \bigcap_{i=1}^{n} \mathfrak{p}_{i}^{*(n)}$ (where $\mathfrak{q}^{(n)}$ is the nth symbolic power of a prime ideal \mathfrak{q}).

PROOF. Since $R_{\mathfrak{p}}$ is a normal local domain which is not a field, \mathfrak{p} is not a prime divisor of zero. Let b be an element in p such that $b'R_p$ $=\mathfrak{p}'R_{\mathfrak{p}}$ (B'R_p denotes the ideal in $R_{\mathfrak{p}}$ generated by an ideal B in R). Then $0:bR\subseteq \mathfrak{q}$, where \mathfrak{q} is the prime divisor of zero contained in \mathfrak{p} . Therefore, $(0:bR)R^* = 0R^*:bR^*$ [4, p. 267] $\subseteq \mathfrak{q}R^* \subset \mathfrak{p}R^* \subseteq \mathfrak{p}_i^*$ $(i=1, \dots, h)$. Fix i, set $\mathfrak{p}_i^* = \mathfrak{p}^*$, and let \mathfrak{q}^* be a prime divisor of $0R^*$ which is contained in \mathfrak{p}_i^* . Then $\mathfrak{q}^* \cap R$ is a prime divisor of zero [4, p. 267] and is contained in $\mathfrak{p} = \mathfrak{p}^* \cap R$. Hence $\mathfrak{q}^* \cap R = \mathfrak{q}$. Further, since q is the only q-primary ideal, every q*-primary ideal contracts in R to q. Hence $R_{\mathfrak{p}}$ is a subring of $R_{\mathfrak{p}^*}^*$, and, since $0R^*:bR^*\subseteq \mathfrak{q}R^*$, b'is not a zero-divisor in $R_{\mathfrak{p}^*}^*$. Since $\mathfrak{p}R^*$ is semi-prime, $b'R_{\mathfrak{p}^*}^* = \mathfrak{p}'R_{\mathfrak{p}^*}^*$ $= \mathfrak{p}^{*'}R_{\mathfrak{p}^{*}}^{*}$. Therefore $R_{\mathfrak{p}^{*}}^{*}$ is normal (Lemma 2 and [3, pp. 276–278]). The proof that $\mathfrak{p}^{(n)}R^* = \bigcap_{1}^{n} \mathfrak{p}_{i}^{*(n)}$ is the same as that in [2]. Namely, since the result is true for n = 1, let n > 1 and assume $\mathfrak{p}^{(n-1)}R^*$ $=\bigcap_{i=1}^{h} \mathfrak{p}_{i}^{*(n-1)}$. Let c be an element in $bR:\mathfrak{p}$ which is not in \mathfrak{p} (since $b'R_{\mathfrak{p}} = \mathfrak{p}'R_{\mathfrak{p}}, bR : \mathfrak{p} \subseteq \mathfrak{p}), \text{ and let } d^* \in \bigcap_{i=1}^{n} \mathfrak{p}_{i}^{*(n)} \subset \mathfrak{p}R^*. \text{ Since } c \in bR^* : \mathfrak{p}R^*,$ $cd^* = br^*$, for some $r^* \in R^*$, hence by the choice of c and b, $b'r^{*'}R_{b,*}^*$ $= c'd^{*'}R_{\mathfrak{p}_{i}^{*}}^{*} = d^{*'}R_{\mathfrak{p}_{i}^{*}}^{*} \subseteq \mathfrak{p}_{i}^{*'n}R_{\mathfrak{p}_{i}^{*}}^{*} = b'^{n}R_{\mathfrak{p}_{i}^{*}}^{*} (i = 1, \dots, h).$ Therefore, $r^* \in \bigcap_{1}^{n} \mathfrak{p}_{i}^{*(n-1)}$, so by induction $r^* \in \mathfrak{p}^{(n-1)}R^*$. Thus $cd^* = br^* \in \mathfrak{p}^{(n)}R^*$, hence $d^* \in \mathfrak{p}^{(n)} R^* : cR^* = (\mathfrak{p}^{(n)} : cR) R^* [4, p. 267] = \mathfrak{p}^{(n)} R^*, \text{ since } c \in \mathfrak{p}.$

Thus $\bigcap_{i=1}^{n} \mathfrak{p}_{i}^{*(n)} \subseteq \mathfrak{p}^{(n)} R^{*}$, and since the opposite inclusion is clear, $\mathfrak{p}^{(n)} R^{*} = \bigcap_{i=1}^{n} \mathfrak{p}_{i}^{*(n)}$, q.e.d.

THEOREM 1. Let R be a semi-local ring with Jacobson radical J, and let R^* be the completion of R. Assume there is a nonzero-divisor b in R such that $(bR)_a = bR$ and $\mathfrak{p}R^*$ is semi-prime, for every prime divisor \mathfrak{p} of bR. Then $(bR^*)_a = bR^*$. If $b \in J$, then R is analytically unramified.

PROOF. If b is a unit in R, then $(bR^*)_a = bR^* = R^*$. Hence assume b is a nonunit in R, and let $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ be the prime divisors of bR. Since each $R_{\mathfrak{p}_i}$ is a discrete Archimedian valuation ring (Lemmas 2 and 4), every \mathfrak{p}_i -primary ideal is a symbolic power of \mathfrak{p}_i . Therefore $bR = \bigcap_1^n \mathfrak{p}_i^{(e_i)}$, so $bR^* = \bigcap_1^n (\mathfrak{p}_i^{(e_i)}R^*)$ [4, p. 269]. Fix i, set $\mathfrak{p}^{(e)} = \mathfrak{p}_i^{(e_i)}$, and let $\mathfrak{p}_1^*, \dots, \mathfrak{p}_h^*$ be the prime divisors of $\mathfrak{p}R^*$. Then $\mathfrak{p}^{(e)}R^* = \bigcap_1^h \mathfrak{p}_i^{*(e)}$ and each $R_{\mathfrak{p}_i^*}^*$ is normal (Lemma 7). Thus the prime divisors of bR^* are the prime divisors of the \mathfrak{p}_iR^* ($i=1,\dots,h$), hence $(bR^*)_a = bR^*$ (Lemma 4). Therefore, if $b \in J$, then by Corollary 4, R is analytically unramified, q.e.d.

COROLLARY 5. Let R, R^* and b be as in Theorem 1, and let S^* be the integral closure of R^* in its total quotient ring. If there is an element v in S^* such that $bv \in R^*$, then $v \in R^*$.

PROOF. $bv \in bS^* \cap R^* = (bR^*)_a = bR^*$, q.e.d.

REFERENCES

- 1. M. Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, Interscience, New York, 1962.
- 2. O. Zariski, Analytical irreducibility of normal varieties, Ann. of Math. 49 (1948), 352-361.
- 3. O. Zariski and P. Samuel, *Commutative algebra*, Vol. I, Van Nostrand, Princeton, N. J., 1958.
 - 4. ——, Commutative algebra, Vol. II, Van Nostrand, Princeton, N. J., 1960.

University of California, Riverside