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NOTE ON ANALYTICALLY UNRAMIFIED
SEMI-LOCAL RINGS

LOUIS J. RATLIFF, JR.!

All rings in this paper are assumed to be commutative rings with a
unit element. If B is an ideal in a ring R, the integral closure B, of B
is the set of elements x in R such that x satisfies an equation of the
form x*+byx*14+ - - - +b,=0, where b,&EB! (=1, - - -, n). An
ideal B in R is semi-prime in case B is an intersection of prime ideals.
If R is an integral domain, then R is normal in case R is integrally
closed in its quotient field. If R is a semi-local (Noetherian) ring, then
R is analytically unramified in case the completion of R (with respect
to the powers of the Jacobson radical of R) contains no nonzero nil-
potent elements.

Let R be a semi-local ring with Jacobson radical J, and let R* be
the completion of R. In [2], Zariski proved that if R is a normal local
integral domain, and if there is a nonzero element x in J such that
pR* is semi-prime, for every prime divisor p of xR, then R is analyti-
cally unramified. In [1, p. 132] Nagata proved that if R is a semi-
local integral domain, and if there is a nonzero element x in J such
that, for every prime divisor p of xR, pR* is semi-prime and Ry is a
valuation ring, then R is analytically unramified. (The condition R,
is a valuation ring holds if R is normal.) The main purpose of this
note is to extend Nagata's result to the case where R is a semi-local
ring (Theorem 1). This extension will be given after first proving a
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number of lemmas. Among these preliminary results, Lemma 3 gives
a necessary and sufficient condition for Ry to be a discrete Archi-
median valuation ring (where R is a Noetherian ring and p is a prime
divisor of a nonzero-divisor b&R), Corollary 2 of Lemma 5 gives a
sufficient condition for a Noetherian ring to be a direct sum of normal
Noetherian domains, and Lemma 6 gives a characterization of ana-
lytically unramified semi-local rings.

In Lemmas 1-4 below, R is a Noetherian ring, S is the integral
closure of R in its total quotient ring, b is a nonunit in R which is
not a divisor of zero, p is a prime divisor of bR, and q is the isolated
component of zero determined by p. If B is an ideal in R, then B'R,
is the ideal generated by (B+q)/q in R,. Likewise, if c¢ER, then ¢’ is
the g-residue of c.

LemMMA 1. (bR).=bSNR, and an element ¢ in R is in (bR), if and
only if ¢/bES.

Proor. If ¢&(bR),, then ¢c*+bic" '+ - - - +b,=0, where b;EbiR.
Dividing this equation by b” shows that ¢/bES, so cEbSNR, hence
(bR).CbSNR. If cEBSNR, then ¢/bES, so (¢/b)"+r(c/b)*14 - - .
+7,=0, where ;& R. Multiplying this equation by 5" shows that
cE(bR),, since cER. Therefore bSNRC (bR),, hence (bR),=bSNR,
g.e.d.

LEMMA 2. Ry ts a discrete Archimedian valuation ring if and only if
R, is normal.

Proor. If Ry is a valuation ring, then R, is normal. Conversely, if
Ry is normal, then R, is a normal local integral domain (hence, the
kernel of the natural homomorphism from R into Ry, which is g, is a
prime ideal), and p’'R, is a prime divisor of b’Ry. Since 'R, (0),
height p’Ry =1 hence Ry is a discrete Archimedian valuation ring [3,
pp. 276-278], q.e.d.

An element ¢&ER such that bR: cR=p is used in the next lemma.
Such an element can be found as follows. Let p=p,, 92, - - -, p, be
the prime divisors of bR, and let d be an element in the p;-primary
component of bR (¢=2, - - -, n) which is not in bR. If bR: dR Y, let
e be an element in (bR:dR):pR which is not in bR:dR, and let ¢ =de.

LEMMA 3. Let ¢ be an element in R such that bR:cR=p. R, 1is normal
if and only if c¢/b€ES.

Proor. Let R, be normal. Since bR:cR=p, b'Ry:c’Ry=p'R,.
Therefore ¢’ &b'Ry, so ¢’ /b’ & R,. Hence, since Sg., is contained in
the integral closure of R, in its quotient field, ¢/b&S. Conversely,
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assume ¢/b€& S. Since cpCbR, (¢/b)pC R. If (¢/b)pCy, then bR[c/b]
CpR[c/b]CR, so R[c/b] is contained in the finite R-module (1/b)R,
hence ¢/b&S. This is a contradiction, so cpEbp. Therefore, there are
elements dE€p, and xER, &), such that cd =bx. Then b'R,=b'x'R,
=c'd’RyC 'Y RyCb' Ry, s0 ¢'p’Ry=b"Rp=c¢'d’Ry. Now ¢’ is not a divi-
sor of zero in Ry (since b'x’ is not), so p'Ry=(b'/c’)R,, hence R, is
normal (Lemma 2, and [3, p. 277]), q.e.d.

LemMA 4. (bR),=bR if and only if Ry is normal, for every prime divi-
sor p of bR.

Proor. If Ry is normal, for every prime divisor p of bR, then R,
= Sg~p, 50 P'RyN\S is a prime divisor of bS. Let p;, - - -, p, be the
prime divisors of bR, and let b; be the image of b in Ry,. Then (bR),
=bSN R (Lemma 1) C (N} (b:Ry, NS)) N R =N} (b;Ry, N\ R)
=bRC (bR),, hence (bR),=bR. Conversely, let (bR),=bR, let p be a
prime divisor of bR, and let ¢ be an element in R such that bR:¢cR=y.
Then ¢/b€ER. If Ry is not normal, then ¢/bES (Lemma 3), hence
c&EbSNR=(bR), (Lemma 1). Since (bR),=>bR, this is a contradiction
to ¢/b&R. Therefore Ry is normal, q.e.d.

LEMMA 5. Let R be a Noetherian ring with Jacobson radical J, let b
be a nonzero element in J, and let py, - - -, p, be the prime divisors of
bR. If Ry, is a discrete Archimedian valuation ring (i=1, - - -, n),
then the isolated component of zero contained in p; is a prime ideal q;
and N? q:=(0). Moreover, b is not a zero-divisor in R, and (bR)s=bR.

Proor. If Ry, is a discrete Archimedian valuation ring, then Ry, is
an integral domain which is not a field, so the isolated component of
zero contained in p; is a prime ideal g;. Since q; is the kernel of the
natural homomorphism from R into Ry,, q: is contained in every p;-
primary ideal. Hence, since bR=0N} (b:Ry,\R), where b; is the q:-
residue of b, and since each p; is a minimal prime divisor of bR,
Z=0N?q;CbR. Since béq; (¢=1, -, n), Z:bR=Z. This implies
Z=bRMN(Z:bR)=b(Z:bR). Therefore, since b&J, Z=0b(Z:bR)
=bZCJZCZ. Hence, Z=N; J*ZCN; J*=(0). Thus b is not a zero-
divisor, so (bR),=bR (Lemma 4), q.e.d.

COROLLARY 1. With the same R and J of Lemma 5, suppose there
is a nonzero nilpotent element in R. If b is a nonzero divisor in J, then
(bR)a#bR.

Proor. If b is a nonzero-divisor in J such that (bR),=bR, then
R, is a discrete Archimedian valuation ring, for every prime divisor
p of bR (Lemma 4). Hence by Lemma 35, the zero ideal in R is semi-
prime, q.e.d.
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Corollary 4 below is the next result which is needed to prove Theo-
rem 1, and it can be proved as a corollary to Lemma 5. Corollaries
1, 2, and 3, and Lemma 6 are not used in the proof of Theorem 1.
They are included at this point because they are of some interest in
themselves.

COROLLARY 2. Let R be an integrally closed Noetherian ring, let J be
the Jacobson radical of R, and let qi, - - -, qn be the minimal prime
divisors of zero. If there is a nonzero-divisor b in J, then R= @7} R/q;,
and R/q; is a normal Noetherian domain.

ProoF. If b is a nonzero-divisor in J, then (bR),=0bR, since R is
integrally closed. Therefore by Corollary 1 the zero ideal in R is
semi-prime, and consequently the total quotient ring Q of R is the
direct sum of » fields. Since the idempotents in Q are integrally de-
pendent on R, they are in R. This, and the fact that R is integrally
closed, immediately imply the conclusions, q.e.d.

In Corollaries 3 and 4 and Lemmas 6 and 7, R is a semi-local ring
with maximal ideals My, - - -, My, J=N{ M,, and R* is the comple-
tion of R.

COROLLARY 3. Assume that no M; is a prime divisor of zero, and that
R* is integrally closed. Then the completion of each Ry, is normal
(hence Ry, is a normal local domain).

Proor. Since no M; is a prime divisor of zero, there is a nonzero-
divisor b in the Jacobson radical of R* [4, p. 267]. Hence by Corol-
lary 2, R* = @ R*/q;, where g; runs through the prime divisors of zero
in R*. Since the idempotents of the total quotient ring of R* are in
R*, no maximal ideal in R* contains more than one primed divisor
of zero. Therefore, there are d prime divisors of zero in R*, since
R*/q; is a complete normal local domain. Let M;R* be the maximal
ideal in R* which contains q;. Then it is immediately seen that
Riter=R*/0:DR/(as\R) =Ry,. Since Ry, is a dense subspace of
R*/q; [4, p. 283], the completion of Ry, is normal. It is well known
[1, p. 59] that this implies that Ry, is a normal local domain, q.e.d.

LEMMA 6. Let b be a nonzero-divisor in J, let R*' be the integral
closure of R* in its total quotient ring, and let T=R* N\R*[1/b]. If
there is an integer n such that b»T CbR*, then R is analytically unrami-
fied. Conversely, if R is analytically unramified, then for every nonzero-
divisor ¢ in R there is an integer k (depending on c) such that
cH(R*NR*[1/c]) CcR*.

PRroOF. Since b is not a divisor of zero in R, b is not a divisor of
zero in R* [4, p. 267], so R*[1/b] is contained in the total quotient
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ring Q of R*. Let x be a nilpotent element in R*. Then x/b0'& T, for
all 2= 1. Therefore, if b»T CbR*, then xCbiT CThi+IR*C Ji—ntIR*
for all 1=#. Since NJiR*=0, x=0. Hence R is analytically unrami-
fied. Conversely, let R be analytically unramified and let q;, - - -, q.
be the prime divisors of zero in R*. Then R* =(P7 (R*/q:)’, where
(R*/q;)" is the integral closure of R*/q:. Since (R*/q.)’ is a finite
R*/q; module [1, p. 112], R* is a finite R*-module. Thus R* NR*[1/c]
is a finite R*-module, for every non-zero-divisor ¢ in R. Hence, since
every element in R*MR*|1/c] can be written in the form r/c/,
where 7 E(c’R*),, the last statement is clear, q.e.d.

COROLLARY 4. With the same notation as Lemma 6, assume (bR*),
=bR*. Then R is analytically unramified.

Proor. If ¢t&T, then t=r/bi, where r&(b'R*),. Since bR* and
b'R* have the same prime divisors, (b’R*),=b'R* (Lemma 4). There-
fore T=R*, hence bT =bR*, and so R is analytically unramified by
Lemma 6, q.e.d.

LEMMA 7. Let p be a height one prime 1deal in R. If Ry is normal, and
if pR* =N p}, where each v} is a prime ideal in R*, then each Ryx is
normal, and pWR* =N pF®™ (where q™ is the nth symbolic power of a
prime ideal q).

ProoF. Since R, is a normal local domain which is not a field, pis
not a prime divisor of zero. Let b be an element in p such that bR,
=p'R, (B'R, denotes the ideal in R, generated by an ideal B in R).
Then 0:bRCq, where q is the prime divisor of zero contained in p.
Therefore, (0:bR)R* = OR*:bR* [4, p. 267] C qR* C pR* C pf
(i=1, - - -, k). Fix 4, set pf =p*, and let ¢* be a prime divisor of
OR* which is contained in pf. Then g* MR is a prime divisor of zero
[4, p. 267] and is contained in p=p*NR. Hence ¢* \R=q. Further,
since q is the only g-primary ideal, every g*-primary ideal contracts
in R to q. Hence R, is a subring of Ry, and, since OR*:bR*CqR*, b’
is not a zero-divisor in Ry Since pR* is semi-prime, 'Ry =p'Ry
=p*'R}. Therefore R is normal (Lemma 2 and [3, pp. 276-278]).
The proof that p®R*=N? p¥™ is the same as that in [2]. Namely,
since the result is true for » = 1, let #» > 1 and assume p*—HR*
=N! p¥»=1_ Let ¢ be an element in bR:p which is not in p (since
b'Ry=p'Ry, bR:pEp), and let d*EN] pf™ CpR*. Since cCbR*:pR*,
cd* =br*, for some r*ER*, hence by the choice of ¢ and b, b’r*’R;a
= 'd*Rjx = d*Ryx C 0" "Rys = U'"Ry» (1 = 1, - - -, h). Therefore,
r*ENt p¥*=Y 5o by induction r*Ep»DR*. Thus cd* =br*Sp™ R*,
hence d*Ep™R*:cR* = (p™ :cR)R* [4, p. 267] =p™R*, since c€p.
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Thus N} pf™Cp™R*, and since the opposite inclusion is clear,
pR* =N} pf™, q.e.d.

THEOREM 1. Let R be a semi-local ring with Jacobson radical J, and
let R* be the completion of R. Assume there is a nonzero-divisor b in R
such that (bR),=bR and pR* is semi-prime, for every prime divisor p
of bR. Then (bR*),=bR*. If bEJ, then R is analytically unramified.

Proor. If b is a unit in R, then (bR*),=bR* =R*. Hence assume b
is a nonunit in R, and let py, - - -, p, be the prime divisors of bR.
Since each Ry, is a discrete Archimedian valuation ring (Lemmas 2
and 4), every p;-primary ideal is a symbolic power of p;. Therefore
bR=N?p®, so bR*=N" (p@ R*) [4, p. 269]. Fix 1, set p© =p®, and
let py, - - -, pr be the prime divisors of pR*. Then p@R*=N" p}®
and each Ry, is normal (Lemma 7). Thus the prime divisors of bR*
are the prime divisors of the p;R* (1=1, - - - , k), hence (bR*),=bR*
(Lemma 4). Therefore, if b& J, then by Corollary 4, R is analytically
unramified, q.e.d.

COROLLARY 5. Let R, R* and b be as in Theorem 1, and let S* be the
integral closure of R* in its total quotient ring. If there is an element v in
S* such that bvE R*, then vE R*.

Proor. buEbS*MR* = (bR*),=bR*, q.e.d.
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