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NOTE ON ANALYTICALLY UNRAMIFIED
SEMI-LOCAL RINGS

LOUIS J.  RATLIFF, JR.1

All rings in this paper are assumed to be commutative rings with a

unit element. If B is an ideal in a ring R, the integral closure Ba of B

is the set of elements x in R such that x satisfies an equation of the

form x"-r-fcix"-1-f- ■ ■ ■ A-bn = 0, where btEBl (i=l, • • • , n). An

ideal B in R is semi-prime in case B is an intersection of prime ideals.

If R is an integral domain, then P is normal in case P is integrally

closed in its quotient field. If P is a semi-local (Noetherian) ring, then

P is analytically unramified in case the completion of P (with respect

to the powers of the Jacobson radical of P) contains no nonzero nil-

potent elements.

Let R be a semi-local ring with Jacobson radical P and let P* be

the completion of P. In [2], Zariski proved that if P is a normal local

integral domain, and if there is a nonzero element x in J such that

pP* is semi-prime, for every prime divisor p of xP, then P is analyti-

cally unramified. In [l, p. 132] Nagata proved that if P is a semi-

local integral domain, and if there is a nonzero element x in J such

that, for every prime divisor p of xP, pP* is semi-prime and Pp is a

valuation ring, then P is analytically unramified. (The condition Pp

is a valuation ring holds if P is normal.) The main purpose of this

note is to extend Nagata's result to the case where P is a semi-local

ring (Theorem 1). This extension will be given after first proving a
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number of lemmas. Among these preliminary results, Lemma 3 gives

a necessary and sufficient condition for Rp to be a discrete Archi-

median valuation ring (where R is a Noetherian ring and p is a prime

divisor of a nonzero-divisor bER), Corollary 2 of Lemma 5 gives a

sufficient condition for a Noetherian ring to be a direct sum of normal

Noetherian domains, and Lemma 6 gives a characterization of ana-

lytically unramified semi-local rings.

In Lemmas 1-4 below, P is a Noetherian ring, 5 is the integral

closure of R in its total quotient ring, b is a nonunit in R which is

not a divisor of zero, p is a prime divisor of bR, and q is the isolated

component of zero determined by p. If B is an ideal in P, then P'P„

is the ideal generated by (P + q)/q in Rp. Likewise, if cER, then c' is

the q-residue of c.

Lemma 1. ibR)a = bSr\R, and an element c in R is in ibR)a if and

only if c/b E S.

Proof. If cEibR)a, then cn+bicn~l+ ■ ■ ■ +bn = 0, where biEblR.

Dividing this equation by bn shows that c/bES, so cEbSC\R, hence

ibR)aQbSr\R. If cEbSr\R, then c/bES, so (c/6)"+ri(c/6)»-1+ • • •
+r„ = 0, where rtER- Multiplying this equation by b" shows that

cEibR)a, since cER- Therefore bSr\RQibR)a, hence ibR)a = bSl^R,

q.e.d.

Lemma 2. Rp is a discrete Archimedian valuation ring if and only if

Rp is normal.

Proof. If Rp is a valuation ring, then Rp is normal. Conversely, if

Pp is normal, then Rp is a normal local integral domain (hence, the

kernel of the natural homomorphism from R into Rp, which is q, is a

prime ideal), and p'Pp is a prime divisor of b'Rp. Since b'Rp^iO),

height p'Pp= 1 hence Rp is a discrete Archimedian valuation ring [3,

pp. 276-278], q.e.d.
An element cER such that bR: eP = p is used in the next lemma.

Such an element can be found as follows. Let p = pi, p2, ■ ■ ■ , p„ be

the prime divisors of bR, and let d be an element in the p,-primary

component of bR (i = 2, • • • , ra) which is not in bR. If bR: dP^p, let

e be an element in ibR:dR):pR which is not in bR:dR, and let c = de.

Lemma 3. Let c be an element in R such that bR:cR = p. P„ is normal

if and only if c/b (£ S.

Proof. Let Rp be normal. Since bR:cR = p, b'Rp:c'Rp = p'Rp.

Therefore c'E°'Pt>, s° c'/b'^Rp. Hence, since -Sr_„ is contained in

the integral closure of Rp in its quotient field, c/b(£S. Conversely,
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assume c/b&S. Since cpQbR, (c/b)pC.R. If (c/b)pQp, then bR[c/b]

CZp7?[c/6]czp, so P[c/&] is contained in the finite P-module (l/b)R,

hence c/bES. This is a contradiction, so cp<JPp. Therefore, there are

elements dEp, and xER, GP> such that cd = bx. Then b'Rv — b'x'Rv

= c'd'RfQc'p'R>CZb'Rt„ so c'p'Pp = 6'Pp = c'd'Pp. Now c' is not a divi-

sor of zero in Ps (since b'x' is not), so p'Pp = (&'/c')Pp, hence P„ is

normal (Lemma 2, and [3, p. 277]), q.e.d.

Lemma 4. (&P),, = bR if and only if R9 is normal, for every prime divi-

sor p of bR.

Proof. If P„ is normal, for every prime divisor p of bR, then P„

= 5ij_», so p'PpPiS is a prime divisor of bS. Let pi, • • • , p„ be the

prime divisors of bR, and let bi be the image of b in PPi. Then (&P)„

= bSC\R (Lemma 1) C (flj (fciPp, H 5)) H P = PI? (&,Pp( Pi P)
= bRQ(bR)a, hence (bR)a = bR. Conversely, let (bR)a = bR, let p be a

prime divisor of &P, and let c be an element in R such that bR'.cR = p.

Then c/b(£R. If P„ is not normal, then c/bES (Lemma 3), hence

cEbSC\R = (bR)a (Lemma 1). Since (bR)a = bR, this is a contradiction

to c/bER- Therefore Pp is normal, q.e.d.

Lemma 5. Let R be a Noetherian ring with Jacobson radical J, let b

be a nonzero element in J, and let pi, ■ • ■ , pn be the prime divisors of

bR. If Pp, is a discrete Archimedian valuation ring (*=1, • • • , n),

then the isolated component of zero contained in p< is a prime ideal q,

and 0" q, = (0). Moreover, b is not a zero-divisor in R, and (bR)a — bR.

Proof. If PPi is a discrete Archimedian valuation ring, then Rfi is

an integral domain which is not a field, so the isolated component of

zero contained in p< is a prime ideal q*. Since q; is the kernel of the

natural homomorphism from P into R9i, q< is contained in every pi-

primary ideal. Hence, since bR = 0" (6,PPiOP), where &,• is the q,-

residue of b, and since each p,- is a minimal prime divisor of bR,

Z = 0" qiQbR. Since b^qt (i = l, ■ • ■ , n), Z'.bR = Z. This implies
Z = bRr\(Z:bR)=b(Z:bR). Therefore, since bEJ, Z = b(Z:bR)
= bZQJZQZ. Hence, Z = 0? JhZQC\? P' = (0). Thus b is not a zero-
divisor, so (bR)a = bR (Lemma 4), q.e.d.

Corollary 1. With the same R and J of Lemma 5, suppose there

is a nonzero nilpotent element in R. If b is a nonzero divisor in J, then

(bR)a^bR.

Proof. If b is a nonzero-divisor in / such that (bR)a = bR, then

Pp is a discrete Archimedian valuation ring, for every prime divisor

p of bR (Lemma 4). Hence by Lemma 5, the zero ideal in P is semi-

prime, q.e.d.
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Corollary 4 below is the next result which is needed to prove Theo-

rem 1, and it can be proved as a corollary to Lemma 5. Corollaries

1,2, and 3, and Lemma 6 are not used in the proof of Theorem 1.

They are included at this point because they are of some interest in

themselves.

Corollary 2. Let R be an integrally closed Noetherian ring, let J be

the Jacobson radical of R, and let qi, ■ • • , q„ be the minimal prime

divisors of zero. If there is a nonzero-divisor b in J, then R= ©" P/q*,

and R/c\i is a normal Noetherian domain.

Proof. If b is a nonzero-divisor in J, then ibR)a = bR, since R is

integrally closed. Therefore by Corollary 1 the zero ideal in P is

semi-prime, and consequently the total quotient ring Q of R is the

direct sum of ra fields. Since the idempotents in Q are integrally de-

pendent on P, they are in P. This, and the fact that P is integrally

closed, immediately imply the conclusions, q.e.d.

In Corollaries 3 and 4 and Lemmas 6 and 7, R is a semi-local ring

with maximal ideals Mi, ■ ■ ■ , Md, T = Df Mi, and R* is the comple-
tion of P.

Corollary 3. Assume that no Mi is a prime divisor of zero, and that

R* is integrally closed. Then the completion of each Pm, is normal

ihence Rm( is a normal local domain).

Proof. Since no Mi is a prime divisor of zero, there is a nonzero-

divisor b in the Jacobson radical of R* [4, p. 267]. Hence by Corol-

lary 2, R* = ©P*/q„ where q, runs through the prime divisors of zero

in R*. Since the idempotents of the total quotient ring of R* axe in

P*, no maximal ideal in P* contains more than one primed divisor

of zero. Therefore, there are d prime divisors of zero in P*, since

P*/q< is a complete normal local domain. Let ilT.P* be the maximal

ideal in R* which contains q<. Then it is immediately seen that

P^s* = P*/q<3P/(qi'^P)=PMi- Since RM< is a dense subspace of

P*/q, [4, p. 283], the completion of Rm{ is normal. It is well known

[l, p. 59] that this implies that Ritt is a normal local domain, q.e.d.

Lemma 6. Let b be a nonzero-divisor in J, let R*' be the integral

closure of R* in its total quotient ring, and let T = R*T\R*[l/b]. If

there is an integer ra such that bnTQbR*, then R is analytically unrami-

fied. Conversely, if R is analytically unramified, then for every nonzero-

divisor c in R there is an integer k idepending on c) such that

ckiR*'(^R*[l/c])QcR*.

Proof. Since b is not a divisor of zero in P, b is not a divisor of

zero in R* [4, p. 267], so P*[l/&] is contained in the total quotient
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ring Q of P*. Let x be a nilpotent element in P*. Then x/b{ET, for

all i^l. Therefore, if bnTQbR*, then xEbiTQbi-"+1R*QJi-»+lR*,

for all i^n. Since C\JiR* = 0, x = 0. Hence P is analytically unrami-

fied. Conversely, let P be analytically unramified and let qi, • • • , q„

be the prime divisors of zero in R*. Then P*'=0" (P*/q,-)', where

(P*/q;)' is the integral closure of P*/q,. Since (P*/q,)' is a finite

P*/q;module [l,p. 112],P*' isafiniteP*-module.ThusP*'f\R*[l/c]

is a finite P*-module, for every non-zero-divisor c in P. Hence, since

every element in R*'f~\R*[l/c] can be written in the form r/c',

where rE(c'R*)a, the last statement is clear, q.e.d.

Corollary 4. With the same notation as Lemma 6, assume (bR*)a

= bR*. Then R is analytically unramified.

Proof. If tET, then t = r/b'\ where rE(bjR*)a. Since bR* and

b'R* have the same prime divisors, (b'R*)a = biR* (Lemma 4). There-

fore T = R*, hence bT — bR*, and so R is analytically unramified by

Lemma 6, q.e.d.

Lemma 7. Let p be a height one prime ideal in R. If Rt is normal, and

if pP* = flJ p*, where each p* is a prime ideal in R*, then each R*.* is

normal, and p(n,P* = nj pf(n) (where q(n) is the nth symbolic power of a

prime ideal q).

Proof. Since Pp is a normal local domain which is not a field, pis

not a prime divisor of zero. Let b be an element in p such that 6'Pp

= p'Pp (P'Pp denotes the ideal in Pp generated by an ideal B in P).

Then 0:&PCq, where q is the prime divisor of zero contained in p.

Therefore, (0:bR)R* = 0R*:bR* [4, p. 267] C qP* C pP* £ p*
(i = l, • • • , h). Fix i, set p* =p*, and let q* be a prime divisor of

OP* which is contained in p*. Then q*f~\R is a prime divisor of zero

[4, p. 267] and is contained in p = p*P\P. Hence q*PP = q. Further,

since q is the only q-primary ideal, every q*-primary ideal contracts

in P to q. Hence Pp is a subring of P**, and, since 0R*:bR*cZqR*, b'

is not a zero-divisor in R**. Since pP* is semi-prime, b'R** = p'R**

= p*'P**. Therefore P** is normal (Lemma 2 and [3, pp. 276-278]).

The proof that p(n)P* = nj p*(n) is the same as that in [2J. Namely,

since the result is true for n = 1, let n > 1 and assume p(n_1)P*

= DJ pf(n-1). Let c be an element in &P:p which is not in p (since

&'Pp = p'Pp, bR:pQp), and let d*Ef>1 pf(n)CpP*. Since cG&P*:pP*,
cd*=br*, for some r*ER*, hence by the choice of c and b, b'r*'R*.*

= c'd*'R$.* = d*'R*t* C p*'"P** = b'nR*.*(i = 1, • • • ,h). Therefore,

r*Gfi; p,*("_1), so by induction r*Gp(n_1)P*. Thus cd*=br*EpwR*,

hence d*EpMR*'-cR* = (pM:cR)R* [4, p. 267] =p(n)P*, since cGp-
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Thus  flj p*<B)Cp(n)P*,   and   since  the   opposite   inclusion   is  clear,

p""P* = njp*(n), q.e.d.

Theorem 1. Let R be a semi-local ring with Jacobson radical J, and

let R* be the completion of P. Assume there is a nonzero-divisor b in R

such that Q)R)a = bR and pP* is semi-prime, for every prime divisor p

of bR. Then ibR*)a = bR*. If bEJ, then R is analytically unramified.

Proof. If b is a unit in P, then ibR*)a = bR*=R*. Hence assume b

is a nonunit in P, and let pi, • • • , p„ be the prime divisors of bR.

Since each P„(. is a discrete Archimedian valuation ring (Lemmas 2

and 4), every pi-primary ideal is a symbolic power of p,-. Therefore

bR = f)n1p\ei), sobR* = C\n1 (p<*>P*) [4, p. 269]. Fix i, set p(e)=pi'i), and

let pf, • • • , p* be the prime divisors of pP*. Then p<"'P* = n? pfw
and each P*j+ is normal (Lemma 7). Thus the prime divisors of bR*

are the prime divisors of the pjP* (* = 1, ■ ■ ■ , h), hence ibR*)a — bR*

(Lemma 4). Therefore, if bEJ, then by Corollary 4, P is analytically

unramified, q.e.d.

Corollary 5. Let R, R* and b be as in Theorem 1, and let S* be the

integral closure of R* in its total quotient ring. If there is an element v in

S* such that bvER*, then vER*.

Proof. bvEbS*(~\R* = ibR*)a = bR*, q.e.d.
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