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In [4] Conlon has successfully generalized much of the theory of

modular representations to the projective case. However his general-

ization [4, p. 166] of one of Brauer's main theorems on blocks [3,

10B], [5] is not entirely satisfactory. In Theorem 1 we present an-

other generalization which is closer than Conlon's to the original

Brauer theorem, and in Theorem 2 we indicate an application involv-

ing the number of blocks with a given defect group.

Let G be a finite group and Q a field of prime characteristic p. A

twisted group algebra T(G) of G over ft is an associative 12-algebra with

a basis consisting of elements (g) in one-to-one correspondence with

the elements g of G, with multiplication determined by equations

ig)ih) = e0lhigh),       g,hEG,

where 0^e0,fcEft- By associativity, «= {t0,h} must be a factor set of

G in ft. It is well known that the projective representations of G in 12

with factor set e can be identified with the representations of T(G)

[6].
For any gEG, define

C«(g)= {xEG:(x)-1(g)(x) = ig)}.

It is evident that C'ig) is a subgroup of the centralizer C(g) of g in G.

Let us call g t-regular provided that C'ig) = Cig). A short calculation

shows that

(1) C'ih-igh) = h-i&ig)h,       g,hEG;

hence the set of all e-regular elements is a union of conjugate classes

of G, which we call the e-regular classes of G.

We assume2 that T(G) satisfies the following conditions:

(2) ih)-'ig)ih) = ih-'gh),        g,hEG,g e-regular;

(3) (r1) = ig)~\ g e G.

(Condition (2) is never an essential restriction; and neither is (3) if

ft is algebraically closed [4, §l].)
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1 This work has been supported in part by the National Science Foundation,

through Harvard University, under Grant NSF-G-23833.
2 In fact we do not need to assume (3), since it is not required in the proof of Con-

lon's theorem.
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For each e-regular class P, let (K) = Eoex (g); these e-regular class

sums (K) form a basis of the center A(G) of T(G). As usual, we call

any p-Sylow subgroup of C(g) for any gGP a defect group of P. For

any block idempotent, i.e. primitive idempotent, e of A(G), write

e= 2^K/jr(P),/itG^- Then the largest of the defect groups of the K

for which /k^0 can be called a defect group of e; this is uniquely de-

termined up to conjugacy in G [4, §3].

Let D be an arbitrary p-subgroup of G. Let C(D) be the centralizer

of D in G, and denote the normalizer N(D) of D in G by 77. For each

e-regular class P, set

*((*)) =    E   («)•
oexnc(B)

By [4, §3], extending s by linearity gives an 12-algebra homomor-

phism s: A(G)—»A(77), where A(P7) is the center of the twisted group

algebra T(H) of H whose factor set is the restriction e| H of e to H.

Adapting our terminology to P7 in the obvious way, we can now state:

Theorem 1. The homomorphism s determines a one-to-one corre-

spondence e<->s(e) between the block idempotents of A(G) which have D

as one of their defect groups and the block idempotents of A (77) which

have D as their unique defect group.

We shall show that Theorem 1 follows from Conlon's theorem. The

lgtter states that e<-+s(e) is a one-to-one correspondence between the

block idempotents of A(G) which have D as one of their defect groups

and the primitive idempotents of U(D), where U(D) is a subalgebra

of A(Pfj which has as a basis those (e| 77)-regular class sums (L) of H

such that P has defect group D and consists of e-regular elements.

(Since only e-regular elements are involved, these class sums are

defined in A(H), even though the analogue of (2) for e|77 need not

hold.) Furthermore each primitive idempotent of £7(7?) is a sum of

block idempotents of A(77) which have defect group D.

As Conlon points out, the complication in his theorem is due to the

fact that an (e| 77)-regular element need not be e-regular. However,

we can prove:

Lemma. Every (e\H)-regular element whose conjugate class in H has

defect group D is e-regular.

This lemma implies that the (e| 77)-regular class sums (P) of H

such that P has defect group D form a basis of U(D), and hence that

U(D) contains all block idempotents of A(P7) with defect group D.

Therefore these idempotents of A(P7) are precisely all the primitive
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idempotents of c/(77). This proves that Theorem 1 follows from Con-

Ion's theorem.

It remains to prove the lemma. Let hEH satisfy the hypothesis of

the lemma. Since h is (e| 77)-regular, Cih)r\HQC'ih). Since D is the

unique defect group of the class of h in TT, D is a £-Sylow subgroup of

Cih)r\H. Then the second paragraph of the proof of [5, Lemma 3.4]

shows that D is a £-Sylow subgroup of CQi), and hence also of C'ih).

For any xECQi), x~lDx is a p-Sylow subgroup of x~lC'ih)x, which

equals C'ih) by (1). Then x~1Dx = y~1Dy for some yEC'ih), and

xy-1ENiD)r\Cix)=Hr\Cix)QC'ih). Hence xEC'Qi), so that h is

e-regular as required.

Theorem 1 can be applied in conjunction with the methods of

Bovdi [l] to generalize [l, Theorems 1 and 2] as follows (cf. [2,

Corollary l]).

Theorem 2. The number of block idempotents of A(G) with D as a

defect group is less than or equal to the number of p-regular t-regular

classes K of G with D as a defect group such that (A) is not a nilpotent

element of A(G).

Equality holds here if G has a normal subgroup T of p-power index

such that T has a normal p-Sylow subgroup, while ft is algebraically

closed.

In a later paper we shall give a proof of a more general form of

Theorem 2.

I wish to thank Dr. Conlon for some helpful correspondence.
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