BLOCK IDEMPOTENTS OF TWISTED GROUP ALGEBRAS1

W. F. REYNOLDS

In [4] Conlon has successfully generalized much of the theory of modular representations to the projective case. However his generalization [4, p. 166] of one of Brauer's main theorems on blocks [3, 10B], [5] is not entirely satisfactory. In Theorem 1 we present another generalization which is closer than Conlon's to the original Brauer theorem, and in Theorem 2 we indicate an application involving the number of blocks with a given defect group.

Let G be a finite group and Ω a field of prime characteristic p. A twisted group algebra $\Gamma(G)$ of G over Ω is an associative Ω -algebra with a basis consisting of elements (g) in one-to-one correspondence with the elements g of G, with multiplication determined by equations

$$(g)(h) = \epsilon_{g,h}(gh), \quad g, h \in G,$$

where $0 \neq \epsilon_{g,h} \in \Omega$. By associativity, $\epsilon = \{\epsilon_{g,h}\}$ must be a factor set of G in Ω . It is well known that the projective representations of G in Ω with factor set ϵ can be identified with the representations of $\Gamma(G)$ [6].

For any $g \in G$, define

$$C^{\bullet}(g) = \{x \in G: (x)^{-1}(g)(x) = (g)\}.$$

It is evident that $C^{\epsilon}(g)$ is a subgroup of the centralizer C(g) of g in G. Let us call g ϵ -regular provided that $C^{\epsilon}(g) = C(g)$. A short calculation shows that

$$(1) C^{\epsilon}(h^{-1}gh) = h^{-1}C^{\epsilon}(g)h, g, h \in G;$$

hence the set of all ϵ -regular elements is a union of conjugate classes of G, which we call the ϵ -regular classes of G.

We assume² that $\Gamma(G)$ satisfies the following conditions:

(2)
$$(h)^{-1}(g)(h) = (h^{-1}gh), \qquad g, h \in G, g \in \text{regular};$$

(3)
$$(g^{-1}) = (g)^{-1}, g \in G.$$

(Condition (2) is never an essential restriction; and neither is (3) if Ω is algebraically closed [4, §1].)

Received by the editors February 15, 1965.

¹ This work has been supported in part by the National Science Foundation, through Harvard University, under Grant NSF-G-23833.

² In fact we do not need to assume (3), since it is not required in the proof of Conlon's theorem.

For each ϵ -regular class K, let $(K) = \sum_{g \in K} (g)$; these ϵ -regular class sums (K) form a basis of the center $\Lambda(G)$ of $\Gamma(G)$. As usual, we call any p-Sylow subgroup of C(g) for any $g \in K$ a defect group of K. For any block idempotent, i.e. primitive idempotent, e of $\Lambda(G)$, write $e = \sum_K f_K(K)$, $f_K \in \Omega$. Then the largest of the defect groups of the K for which $f_K \neq 0$ can be called a defect group of e; this is uniquely determined up to conjugacy in G [4, §3].

Let D be an arbitrary p-subgroup of G. Let C(D) be the centralizer of D in G, and denote the normalizer N(D) of D in G by H. For each ϵ -regular class K, set

$$s((K)) = \sum_{g \in K \cap C(D)} (g).$$

By [4, §3], extending s by linearity gives an Ω -algebra homomorphism $s: \Lambda(G) \to \Lambda(H)$, where $\Lambda(H)$ is the center of the twisted group algebra $\Gamma(H)$ of H whose factor set is the restriction $\epsilon \mid H$ of ϵ to H. Adapting our terminology to H in the obvious way, we can now state:

THEOREM 1. The homomorphism s determines a one-to-one correspondence $e \leftrightarrow s(e)$ between the block idempotents of $\Lambda(G)$ which have D as one of their defect groups and the block idempotents of $\Lambda(H)$ which have D as their unique defect group.

We shall show that Theorem 1 follows from Conlon's theorem. The lgtter states that $e \leftrightarrow s(e)$ is a one-to-one correspondence between the block idempotents of $\Lambda(G)$ which have D as one of their defect groups and the primitive idempotents of U(D), where U(D) is a subalgebra of $\Lambda(H)$ which has as a basis those $(\epsilon \mid H)$ -regular class sums (L) of H such that L has defect group D and consists of ϵ -regular elements. (Since only ϵ -regular elements are involved, these class sums are defined in $\Lambda(H)$, even though the analogue of (2) for $\epsilon \mid H$ need not hold.) Furthermore each primitive idempotent of U(D) is a sum of block idempotents of $\Lambda(H)$ which have defect group D.

As Conlon points out, the complication in his theorem is due to the fact that an $(\epsilon | H)$ -regular element need not be ϵ -regular. However, we can prove:

LEMMA. Every $(\epsilon | H)$ -regular element whose conjugate class in H has defect group D is ϵ -regular.

This lemma implies that the $(\epsilon | H)$ -regular class sums (L) of H such that L has defect group D form a basis of U(D), and hence that U(D) contains all block idempotents of $\Lambda(H)$ with defect group D. Therefore these idempotents of $\Lambda(H)$ are precisely all the primitive

idempotents of U(H). This proves that Theorem 1 follows from Conlon's theorem.

It remains to prove the lemma. Let $h \in H$ satisfy the hypothesis of the lemma. Since h is $(\epsilon \mid H)$ -regular, $C(h) \cap H \subseteq C^{\epsilon}(h)$. Since D is the unique defect group of the class of h in H, D is a p-Sylow subgroup of $C(h) \cap H$. Then the second paragraph of the proof of [5, Lemma 3.4] shows that D is a p-Sylow subgroup of C(h), and hence also of $C^{\epsilon}(h)$. For any $x \in C(h)$, $x^{-1}Dx$ is a p-Sylow subgroup of $x^{-1}C^{\epsilon}(h)x$, which equals $C^{\epsilon}(h)$ by (1). Then $x^{-1}Dx = y^{-1}Dy$ for some $y \in C^{\epsilon}(h)$, and $xy^{-1} \in N(D) \cap C(x) = H \cap C(x) \subseteq C^{\epsilon}(h)$. Hence $x \in C^{\epsilon}(h)$, so that h is ϵ -regular as required.

Theorem 1 can be applied in conjunction with the methods of Bovdi [1] to generalize [1, Theorems 1 and 2] as follows (cf. [2, Corollary 1]).

Theorem 2. The number of block idempotents of $\Lambda(G)$ with D as a defect group is less than or equal to the number of p-regular ϵ -regular classes K of G with D as a defect group such that (K) is not a nilpotent element of $\Lambda(G)$.

Equality holds here if G has a normal subgroup T of p-power index such that T has a normal p-Sylow subgroup, while Ω is algebraically closed.

In a later paper we shall give a proof of a more general form of Theorem 2.

I wish to thank Dr. Conlon for some helpful correspondence.

References

- 1. A. A. Bovdi, The number of blocks of characters of a finite group with a given defect, Ukrain. Mat. Ž. 13 (1961), 136-141. (Russian)
- 2. R. Brauer, On the arithmetic in a group ring, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 109-114.
- 3. ——, Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Z. 63 (1956), 406-444.
- 4. S. B. Conlon, Twisted group algebras and their representations, J. Austral. Math. Soc. 4 (1964), 152-173.
 - 5. A. Rosenberg, Blocks and centres of group algebras, Math. Z. 76 (1961), 209-216.
- 6. M. Tazawa, Über die Darstellung der endlichen verallgemeinerten Gruppen, Sci. Rep. Tôhoku Univ. Ser. I 23 (1934), 76-88.

TUFTS UNIVERSITY