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Introduction. It is well known that a function which is a derivative

is in the first Baire class, and it is also known that a function which is

an approximate derivative is in the first Baire class. The analogous

statement for partial derivatives of functions of more than one vari-

able is of course not true. For if g is a nonmeasurable function of one

variable, then the function f(x, y)=x-g(y) has a partial derivative

which is nonmeasurable. Thus it is seen that a function of n variables

need be restricted somewhat in order for its partial derivative to be

in the first Baire class. G. P. Tolstov [4] has shown that if /is linearly

continuous on a domain GCZR2 and if df/dx exists everywhere in G,

then df/dx is in the first Baire class. In addition, he has given an

example of a linearly continuous function of three variables whose

partial derivative exists and is not in the first Baire class. In this paper

we show that Tolstov's theorem remains true if approximate partial

differentiation is used in place of ordinary partial differentiation.

Notation. Let G denote a domain in P2 and let P+ denote the posi-

tive real numbers. For a real-valued function /, let w(/, p) denote the

oscillation of / at the point p.

Definitions. A function / of n real variables xi, x2, • • ■ , xB is said

to be linearly continuous if / is continuous with respect to x, for each

i — l,---,n whenever the other variables are held fixed.

Let (x0, yo) be a fixed point in G. The set S(x0, yo) = {(x, y0, r)

(EGXR+: | x —x0| ^r} is a vertical Stolz angle in the plane y = y0 with

vertex at (x0, yo, 0).

Let 7o be an open interval of the real line and let /: 70—>P. The

number A is called the approximate derivative of the function / at x0

if there exists a set P, having x0 as a density point, such that for

xGP and x—>x0 we have lim((/(x) — /(x0))/(x — x0)) =A. The sub-

script "ap" will be used in connection with the usual notations for

derivatives to indicate approximate derivatives.

Lemma 1. Let<j>: GXR+-+R, and suppose that (xB, y, r0)—*£(x0, y, r0)

is a continuous function of y for each fixed x0 and ro, and suppose that

for each point (x0, yo) in G, the limit of <b(x, y, r) relative to S(x0, yo)
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exists as (x, y, r)—»(x0, y0, 0). If at each point (x0, yo) tra G,/(x0, y0) «

defined to be equal to this limit of <f>ix, y, r), then the function f: G—>P

is in the first Baire class.

Proof. For the proof we use Baire's Theorem [2], that is, we verify

that for any nonempty perfect set P(ZG,f\P has a point of conti-

nuity. Suppose there is a nonempty perfect set PEG such that/|P

has no point of continuity. For each positive integer m, let

A» =  < (x, y) E P: «(/| P, x) ^ — for x = (*, y)\ .
\ m )

Since/| P is assumed to be totally discontinuous, P = LC_, Dm. Then

since P is of the second category in itself, there is an integer mo and

an open disc a in G such that 7?mo is dense in Pf~\a and PC\o-vL0.

Moreover, each Dm is a closed set so that in fact Dm, contains PC\a.

Let <2 = closure iPC^a).

For each m = \, 2, ■ ■ ■ , let

Six, y,m) = {(«, y, r) E S(x, y):r^ \/m\

and let

A„=  \ix,y)EQ:ZESix,y,m)=>\<bi$)-fix,y)\   g —| ,

where M = 24jra0- It follows that Q = U^_x Am, and since () is of the

second category in itself, there is an integer k0 and an open disc a' such

that Qr\a'y£0 and Ak„ is dense in QCw'.
Let (xo, yo) EP^o-^c'- There is a smallest integer m = mixa, yo)

for which (x0, yo) is in Am. Let/ = max{A0, rai(x0, yo)}- Since <p is

continuous as a function of y whenever x and r are fixed, there is a

positive number 5 such that y0 — 5<y<yo + 8 implies

1 1        l
4>ixo, y, 1//) - <K*o, yo, l//)   < — •

Let t denote the open disc in G with (x0, yo) as center and with radius

equal to the smaller of 5 and 1/j, and suppose (m, v) is any point in

Akor\T. Then \v—y0| <8 and |ra —x0| <l/j, so that

(1) the point (x0, v, 1/j) is in S(w, v, j) and

(2) |0(*o, v, l/j)-<bixo, y0, 1/j) I <1/M.
Let {(xn, yre)} be any sequence of points in Q with (x0, yo) as limit.

There is an integer 7Y such that i>N implies (x,-, y») is in V, where

V = rr^a-r\a'. Let i greater than N be fixed and let q be the greater
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of k0 and m(xit yt), where m(xt, yA is the smallest positive integer m

such that (Xi, yA is in Am. Then there is a positive number 8' such

that yt — 8' <y<yi + 8' implies

i i        1
I <f>(xi, y» l/q) ~ <t>(xi, y, l/q) I  < — •

M

Since Ako is dense in VT\Q, there is a point (u, v) in Akar\ V such that

the distance from (u, v) to (x,-, y<) is less than min {5', l/q}. Then

\v — y,-| <5' and \u — xt\ <l/q, so that (x,-, v, l/q) is in S(u, v, q) and

,        1
I 4>(xit v, l/q) - <b(xi, y{, l/q) \  < — •

M

Since (u, v) is in AkfiC\T, (1) and (2) hold for (u, v), and hence

l/(*o, yo) - /(*,-, y.) | g | /(*o, yo) - <K*o, yo, l/j) \

+ I <K*o, yo, l/j) - <K*o, v, l/j) |

+  | 4>(*o, v, l/j) - f(u, v) I

+ I /(«>») - *(*.-,», l/q) I
+  | *(*.-, v, l/q) - <t>(xi, yit l/q) \

I                                            i         6         l
+ | 0(x,-, y,-, l/q) - f(xi} y.) |   < — =-

M      4wo

However, this implies that w(/|P, (x0, yo)) ^l/2m0, which is a con-

tradiction.

It is not difficult to extend Lemma 1 to the w-dimensional case. For

the statement of the lemma for the w-dimensional case, "y" and "yo"

are replaced by (« —1) -tuples of real numbers.

The next lemma concerns a convergent interval function defined

by Goffman and Neugebauer in [l]. An extension of this notion will

be used in proving the main theorem.

Lemma 2. Suppose that g is an approximately derivable function de-

fined on an open interval IGR- For ICZJ, let

( g(u) ~ gto        )
A(I;k) =     (^sjG/X/:--—>k}

( u — v )

and

( g(u) — g(v)        1
73(7:*) =     («,»)G/X/:—-— < k\ .

\ u — v )
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Then

(      \A(I;k)\ 1) I      \BiI;k)\        1)
sup^: '    . ' > — \ =inf h: '    ,   '      ' > —} =0(7).

I |7|2 2) I |7|2 2)

Proof. For brevity let A denote the set of k's for which | ̂ 4(7; k) |

>§• |7|2, and let 73 be the set of k's for which |P(7£; k)\ >§-|7|2.

Let k'EB. Then fe'^inf B, and | 73(7; k')\ >§• | 7|2. Thus it follows
that |.4(7; k') \ <§• 17|2, hence k'(£A. It is easily seen that if

£<sup A, then kEA. Hence, fc'j^sup ^4 from which it follows that

inf Pig sup A.

Let us suppose that inf 73>sup A. Let inf P>£>sup A. There are

iu, v) and («', v') in 7X7 such that (g(ra) — giv))/iu— v) >£ and

(g(M') — giv'))/W —v>) <£• By the Mean Value Theorem for approxi-

mate derivatives (see [l]) there are f and Z' in 7 such that

/dg\ (r) _ «(«) - «(»)  and /*\ (n = g(«0 - rfO .
\dx/*p u — V \^x/ap w' — l>'

By the Darboux property for approximate derivatives (see [2]), there

is a o" between f and Z' such that (dg/rfx)ap(o-) =£.

Hence, the set M={{u, v)ETXl: sup A <(g(w) — g(z)))/(« —»)

<inf P} is nonempty. In fact we will show the M has positive mea-

sure. Let iuo, Vo)EM. Then the set

/  c r           j  ^ (g(«°) ~ gW) ^ . , R\M„0 =   <t£ 7: sup A <-< mf 73>
I («o — v) J

has positive linear measure since g is approximately continuous at t;o-

For each v'EMUo, the set {«E7:sup A <(g(«) —giv'))/iu — v) <inf B\

has positive linear measure. Therefore the set M has positive mea-

sure.

Since inf P>£>sup,4, |P(7; £)| ^|-|7|2and |j4(/;£)| ^%-\l\2.

These inequalities imply that

I   i giu) — g(v)        ) 1    ,
(«,5)G/X/:^—— ^^    = —Ul2

I  l u — v ) 2

and

( giu) ~ giv)        ) 1    .    .
(«,5)£/X/:--—£S>    = — U2-

( u — v ) 2

These inequalities are true for any £ between inf P and sup A. There-

fore
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I  ( g(u) - g(v) \ 1 ,
l(«,8)G/X/:—-— SiinfTn    £ —   |7|2.

I   ( u — v ) 2

Similarly we obtain

( g(u) ~ g(v) I   I        1    i     i
\(u,v)GIX I: —-— g sup ^ U — | 712.
(. u — v )  \       2

Hence it follows that

( g(w) — e(v) )  I
\(u,v)ei XT. sup A <—-— <inf B} \
{ u — v )  |

is equal to 0, a contradiction. Therefore inf P = sup A, and the proof

is complete.

The interval function mentioned before the lemma is given by the

equation in the statement of the lemma, that is, <t> is defined on the

collection of all subintervals 7 of J and the definition of <f>(I) is as

given above.

We also need the following lemma.

Lemma 3. Let f be a measurable function of 2 real variables that is

continuous with respect to the second variable and suppose that

IX [yo — l/n, y04-l/w] is contained in the domain of f for the real num-

ber y0, the positive integer n, and the real interval I. If the set S is defined

by S={(u, v)E.lXl: (f(u, yo)—f(v, yo))/(u— v)>a\ for some real

number a, then the set Sn, defined by

e        Si     \c= cMy) -/(",y)^Sn =  < (u, v) G S:-^ a
\ u — V

for every y G ( yo-> yoH-)>,
\ n n /)

is a measurable set.

Proof. Let {77;} be a strictly decreasing sequence with a as its

limit. Let

Wi(y) = < (u, v) G S:-^ 77A .
\ u — V J

For any given i and y, W»(y) is measurable since

/(«»y) - /(», y)

(u — v)
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is a measurable function of u and v for a fixed y. We define S„.i

= n„s/(n) Wiiy) where /(ra) denotes the interval (y0 —1/ra, y0 + l/w).

Then

Sn.i = < («, v) E S:-^ ru
\ (w — V)

for every y E (yo-> yo H-If-
\ n n /)

We will show that Sn,i = fi|/eQ(n) Wiiy) where <2(ra) denotes all the

rational numbers in Jin). This will establish that Sn,i is measurable

for then Sn,i will be the intersection of countably many measurable

sets.

Let (m0, Vo)E^yeQ(n) Wiiy), and let y' be any irrational in

(y0 —1/w, y0 + l/ra). We need to verify that

/(«.,y)-/K/)s-^ 17,.

yo — »0

Let {qm\ be a sequence of rationals with qm—*y'- Then (w0, z>o)

E^i(gm) for each m for which gOT is in (y0 —1/ra, y0 + l/ra); thus

ifiuo, qm)~fivo, qm))/iuo—Vo)'^rii for m sufficiently large. Since/ is

continuous with respect to the second variable, it follows that

ifiuo, y')—fivo, y'))/iuo—v0) ^Vi- Therefore (w0, v0) is in Wiiy'), and

so S„,i = nveQ(n) Wiiy) a°d Sn,i is measurable. We observe that

■S„ = Uj"i S„,i. Hence, each 5„ is measurable as was to be proved.

Theorem 1. Let GCP2 be a domain. If f: G—*R is continuous rela-

tive to the second variable (y) and the approximate partial derivative

with respect to x, (d//dx)aP, exists throughout G, then (d//dx)ap is in the

first Baire class.

Proof. We will define a function $: GXR+^>R which is continuous

with respect to y for each fixed x and r, and we will show that, for

(x0, yo)EG, lim <J>(x, y, r) = (d//dx)„,(xo, y0) relative to 5(x0, yo) as

(x, y, r)—>(x0, yo, 0). The function 4> will be defined in terms of a con-

vergent interval function which was defined by Casper Goffman and

C. J. Neugebauer for the approximate derivative of a function of a

real-variable (see [l]).

Let <bVo denote the interval function of Goffman and Neugebauer

defined on the linear sub-intervals of that part of the line y = yo which

lies in G (see below for the precise definition). We then let f>(x0, yo, »"o)

= #»o(*o — ro, xo, r0) for (x0, y0) G and r0ER+- (Note: for a given

(x0, yo) it may happen that <f>Voixo — r, x0+r) is not defined for large



i966] BAIRE CLASSIFICATION OF PARTIAL DERIVATIVES 121

values of r. We will ignore this since we are interested in the limit as

r->0.)

Let (x0, yo) GG be fixed, and suppose { (xn, y0, rn)} is any sequence of

points in 5(x0, yo) with (x0, yo, 0) as limit. Since |x„ —x0| ^r„, the

point (x0, yo) is in each of the intervals [xn — rn, x„4-r„] on the line

y = yo. Therefore,

( — )   (*o, yo) = lim <pyt)(xn - r„, xn + rn) = lim $(xB, y0, rn).

We will now give the definition of d> and show that it satisfies the

"continuity" requirement of Lemma 1. Suppose (x0, yo, fo) is a fixed

point. Let 7 denote the interval [x0 — r0, x04-r0] and define

ait    l\    i,   n r- r „ r Xu' y) -/(p» y) ^ L\A(I;y;k) = < (u, v) G 7 X 7:-> &> .
t u — v )

Then the required interval function is defined by

. m /,   U(/;yo;*)| ^ 1 \
^0(7) = SUp j£:-jyr- > yj .

Let r)=<j>y„(I) =^(xo, yo, fo) and let «>0 be given. The set

5 =     (a,»)G/X/:-■-■-> V ~ —?
( u — v 2)

satisfies | S\ >§• | 7|2. Next define

c        it     n ̂  o f(-u' y) ~ Xv' y) »           €
5B =   < (m, d) Go:-> 77-

I u — v 2

for every y G ( yo->  yo 4-)> ■
\ n n /)

Since/ is continuous relative to y, each (u, v)G.S is eventually in

some S„. Thus 5 = U^_i S„. Since the S„'s, are measurable (by Lemma

3), it follows that there is some N such that | U^.i Sn\ >§• 11\2. Let

y' be any number that satisfies y0 — l/n<y' <y0 + l/N. We observe

that

A(I;y;r) - t) =  <(u,v) G 7 X 7:-> rj - «>
I u — v J

N

DU5n.
B-l
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Therefore   (|^4(7;   y;   77 — e) | )/| l\ 2>h,   so   that  0„'(xo — r0,   x0 + r0)

^rj — e.

Let

Bil;y;k) =  <(«, v) E I X 7:- < k> .
\ u — v )

By Lemma 2, we have

I      \AiI;y0;k)\         11               |     \BH;yo;k)\ \\
sup <A:-j—j- > —> = inf <k:-j—j-> —> •

I | 7|2 2 J I | 7|2 2)

Let

r      it      \c- tv t f(~U' yo) ~ f(-V' yo) ^ e IT =  < (ra, d) E 7 X 7:- < i; + — > .
( u — v 2 ;

Then we have | r| > \ ■ | 7|2. Define

Pn = S («, ") E P:-< ?/ H-
( u — v 2

for every y E (yo-» yo H-)> ■
\ n n I)

Since/ is continuous relative to y, we have P = U^5_1 P„. The Pn's are

measurable (the proof is similar to the proof of Lemma 3), hence there

is an integer K such that | U^ P„| >J-1 7|2. Let y* be any number

that satisfies y0 — l/K <y* <y0 + l/K. We observe that

P(7;y*;?; +e) =  < («, v)EIXI:- < »7 + e>
1, u — v )

D   U   Pn.
n-1

Therefore | 73(7; y*; v+e)\ >§• |/|2 and so

0v.(xo — r0, *o + r0) S V + «>

Let M = max{7V, K}. Then, if y0-l/ikf<y<y0 + l/M, it follows

that

| $(x0, y, ro) - $(*o, yo, r0) |

=   | (byixo — ro, Xo + ro) — <l>y„ixo — r0, x0, r0)\   < e.

Therefore 4> is continuous with respect to y at (x0, yo, ro). Hence, by

Lemma 1, (d//dx)ap is in the first Baire class.

Remark. In addition to the theorem we previously mentioned,
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Tolstov showed that dmf/dxm is in the first Baire class in a domain

GCP2 if / is a linearly continuous function and if dmf/dxm exists

everywhere in G, and by means of an example, Tolstov showed that

the partial derivative of a linearly continuous function of three vari-

ables need not be in the first Baire class. With the ^-dimensional case

of Lemma 1, it can be shown that if the function / of three variables

(x, y, z) has "planar continuity" for each fixed value of x, then df/dx

is in the first Baire class.

A linearly continuous function of two variables is in the first Baire

class (e.g. see Kuratowski [3]), and the partial derivatives of such

functions are in the first Baire class. Suppose /: G-^R is linearly

continuous and that dmf/dxm exists everywhere in G. We observe that

dmf/dxm = (d/dx)(dm-lf/dxm-'), and that d^f/dx™-1 is in the first

Baire class but is not necessarily linearly continuous. Thus we are led

to ask if the hypothesis that/: G^>R is in the first Baire class is suffi-

cient in order that df/dx be in the first Baire class whenever df/dx

exists throughout G. The following example gives a negative response

to this question.

Example. There is a function /: R2-^>R which is in the first Baire

class for which df/dx exists everywhere but is not in the first Baire

class.

Let \rn} be a sequential ordering of the rational numbers in P. For

each « = 1, 2, • • - , let g„: R-+R be a differentiable function satisfy-

ing the conditions that — l/w^g„(x) gl/w for all x and g„'(0) = l.

We define/: R2-^>R as follows:

("0 if y is irrational
/(*, y)= {

\gn(x)    if y = rn for some n.

It is clear that/is in the first Baire class and df/dx exists everywhere.

However, on the y-axis df/dx is equal to zero at each point (0, y)

for which y is irrational and df/dx is equal to one at each point

(0, y) for which y is rational. Thus df/dx has no point of continuity

on the perfect set which is the y-axis. Therefore df/dx is not in the

first Baire class.
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