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KIRZBRAUN’S THEOREM AND KOLMOGOROV’S
PRINCIPLE!

EDWARD SILVERMAN

Let B be a Banach space. A distance function p on B is a non-
negative valued function which is continuous, positively homogeneous
of degree one and subadditive. If 4 is a set and if x and y map 4
into B then we write xpy if p(x(a) —x()) < p(y(a) —y(b)) for all
a, bEA. If 4 is a k-cell, if B is Euclidean space, if p is the norm and if
L is Lebesgue area, then Kolmogorov's Principle, K.P., asserts that
Lx =Ly if xpy [H.M.]. Lebesgue area is a parametric integral of the
type considered by McShane [M], for smooth enough maps. In this
paper we consider other such integrals, not necessarily symmetric,
for which a type of K.P. holds. We conclude with a minor application
to a Plateau problem.

The proof of K.P. follows from

KirzBRAUN'S THEOREM. If A CE" and t: A—E" is Lipschitzian,
then there exists an extension T of t, T: E*—E", and T is Lipschitzian
with the same constant as t [S].

The proof of the version of K.P. in which we are interested depends
upon an embedding of E" in m, the space of bounded sequences [B],
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and an extension theorem, resembling that of Kirzbraun, for m.

Letabe the distance function on 7 defined by a(a) = max { supat, 0 } .
In a manner to be made precise in the Embedding Theorem, « is
universal as a distance function.

Let B be a separable Banach space and p be a distance function on
B. Let {b;} be dense on 9K where K = {bEB|p(b) <1}. There exist,
by the Hahn-Banach Theorem [B], f;&B* such that fi(b;)=1 and
f:(b) =p(b) for all bEB. Since p is continuous there exists N’ >0 such
that ||f|| £ N’ for all 5.

EMBEDDING THEOREM [S3]. Let Vb= {fi(b)}. Then VEL(B, m)
and p=aV.

The proof is almost immediate.
Let N be the set of natural numbers. If k& N, then A*m is the space
of all bounded real-valued anti-symmetric functions on N* with the

sup norm.
If a=(ay, - - -, ax) Em* let U,€L(E*, m) and Aa=aiA - - - Aax
EA"m be defined by Uah= Zf-l h‘-a’. forall h= (hl’ - e, hk) EEk, and
a3 . a';k
(Aa)(my, - - -y m) = det, ......
lai' a
where, of course, a;=(aj, a?, - - - ). Furthermore, if {=(¢y, -+ -, &)
Em** then
$1(@) - - - Ga(ad)
[Ag, ¢1A - - - Agx] = det| - - - - - . . .
$1(ar) - - - fuax)
If E¥Cm and a, - - -, ax&E*, then ||Aal| is the volume of the
parallelepiped spanned by ai, - - -, a. If similarly, b& (E**Cmt

then ||Ad|| =||Ab|| if U« Us, and this fact is vital for the validity of
K.P. In general, we write a<b if U, a Us.

Let M be the set of all distance functions on A*#m and let M’
= {fE M|f(Aa) <f(Ab) whenever a<b}.

Let Q be a k-cell. If xE C(Q, m) is Lipschitzian, then dix = {9x7/du’}
exists almost everywhere. We write dx for (dix, - - -, dix) Em* and,
as above, Adx for dixA - - - Adix.

Suppose that B is a Banach space contained in m. Then we can
identify A*B with the appropriate subspace of A*m. Let Q be a k-cell
and P(Q, B) be the subset of C(Q, B) consisting of quasilinear func-
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tions. Then P(Q, B) is dense in C(Q, B). If z&P(Q, B) and f&€ M then
we define &z= Y f(Adz)-vol A where the summation is taken over
the oriented simplexes, A, of linearity of z. Let M"' = {f& M'|é& is
lower semi-continuous on P(Q, B) } If fEM' then the Fréchet ex-
tension, Ly g, of & is the Lebesgue area: Ly px =lim inf, ., &2 for each
xEC(Q, B) where zEP(Q, B). Let us write Ly for Ly, .. We will make
use of the fact, proved like the two-dimensional case in [S3], that
Ly, px = [f(Adx) = Lyx for x in a subset of C(Q, B) which contains, in
particular, all Lipschitzian maps.

It is obvious that L; < L, 5, but not at all evident that the equality
holds, though this known for k=2 and for a wide class of functions for
k>2.

Let e be the identity mapping on m.

EXTENSION THEOREM. Let 0 >0, A Cm and t: A—m with toa(oe| 4),
i.e., a(ta—tb) Scala—0b) for all a, bEA. Then there exists an extension
T of t such that Ta(ce). Let ¥(a, c) = (ta)'+oa(c—a) for all aE A and
cEm, and let T(c) =inf{a//.~(a, c)IaEA } Then we can let Tc= { T(c) }

The proof is like that of the corresponding theorem in [S3]. First
suppose that ¢€A4. Then ¥.(a, c¢) —v¥i(c, ¢)=(a)'+oa(c—a)—(tc)*
2oa(c—a) —a(tc—ta) =0 and so T|A =t If bEm then Y;(a, b)
—¥ia,0) =ca(d—a) —a(c—a) ]| Sealb—c) and so |¢(a,b) —¥i(a,0) |
<q||b—d|. Thus |T«®)| =||td|| +o]|b—c|| and TbEm for all b. If
dEmthen [T:(b) — Ti«(d) ] Ssup[oa(b —a) —ga(d —a) ]| Soa(b—d),and
the proof is complete.

Let m,a =0 where bi=a'if :<n and b*=0 for 1>n.

It is clear that x,—vy, in C(Q, m), if and only if

max{a(xa(p) — y(p)) | # € @} —0 and max{a(y(p) — x.(p)) |p € Q} 0.

Hence Tx,—Ty whenever x,—y and Teae.

KoLM0OGOROV's PRINCIPLE. If x, yEC(Q, m), if x a y and if fEM"',
then Lyx < Lyy.

Let 2&P(Q, m) and Tae. Let w=Tz and w,=m,w. Then w is
Lipschitzian. Hence for almost all p&Q, all hER* and s> 0, a(sdw,.(p)
‘h40(5)) = a(w,(p+sh) —w,(p)) S sa(dz(p)- k). It follows that dw(p)
~<dz(p) and, since fFEM", Ly(Tz) = [f(Adw) < [f(Adz) =&z.

If we let ty =x then ta(e| range y) and, by the Extension Theorem,
there exists Toe with Ty=x. Let z,—y with 2,EP(Q, m) and &z,
—Lsy. Then Tz,—x and Lyx <lim inf L,(Tz,) <lim &z, = Lyy.

If seems appropriate to show that there exist 4 & M" such that 4
is not symmetric.
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If a&mk*, then R,, the range of U,, is the vector subspace of m
spanned by the components of ¢ and R} is the space of linear func-
tionals over R,. If {ER}, let Na(§)=inf{K|Ka(c)§§‘(c) for all ¢
in R,}. Let A(Aa) =sup{[Aa, HAGA - - - Afi]| Na(§:) S1}. Suppose
that a<b and TEL(Ry, R,) is defined by U,=T o U,. Let T*
EL(RY, R}) be defined by T*{=¢{oT. If Kao U,=¢ o U,, then
Koo UpzT*¢ 0 Uy and Np(T*t) £ Na(§). Thus

A(Aa) = sup{[Ab, T*1A - - - AT*0:] | Na(s) = 1)
< sup{[Ab,mA - - - Am]| No(ns) < 1} = A(Ad).

For each yEA*m we set

’Z (Ag))(n) = v(n) for all n € N"} .

i=1

Aly) = inf{ }z: A(Aay)

=1

Then AE M’. It can be shown, by making suitable modifications in
the argument of [S3], that A€ M"".

We conclude with an interesting, though trivial, application. If
fEM"” and ¢EC@OQ, m) and B(¢) =inf{fo]x€C(Q, m) and
x|6@=¢}. Then B(¢) <B(¢’) if ¢pag’. The proof goes as follows:
There exists Tae with ¢ =T¢’. Let y& C(Q, m) with y| 30=¢’'. Then
TyEC(Q, m) and Ty|dQ=¢. Hence B(¢) SLy(Ty) < Lyy.
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