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KIRZBRAUN'S THEOREM AND KOLMOGOROV'S
PRINCIPLE1

EDWARD SILVERMAN

Let B be a Banach space. A distance function p on B is a non-

negative valued function which is continuous, positively homogeneous

of degree one and subadditive. If A is a set and if x and y map A

into B then we write xpy if p(x(a)—x(b)) ^p(y(a)—y(b)) for all

a, bEA. If A is a &-cell, if B is Euclidean space, if p is the norm and if

P is Lebesgue area, then Kolmogorov's Principle, K.P., asserts that

Px^Py if xpy [H.M.]. Lebesgue area is a parametric integral of the

type considered by McShane [M], for smooth enough maps. In this

paper we consider other such integrals, not necessarily symmetric,

for which a type of K.P. holds. We conclude with a minor application

to a Plateau problem.

The proof of K.P. follows from

Kirzbraun's Theorem. If AEE" and t: A—>En is Lipschitzian,

then there exists an extension T of t, T: En-^En, and T is Lipschitzian

with the same constant as t [S].

The proof of the version of K.P. in which we are interested depends

upon an embedding of P" in m, the space of bounded sequences [B],
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and an extension theorem, resembling that of Kirzbraun, for m.

Let a be the distance function on m defined by aia) = max {sup o*, 0}.

In a manner to be made precise in the Embedding Theorem, a is

universal as a distance function.

Let B be a separable Banach space and p be a distance function on

B. Let [bi] be dense on dK where K= {bEB\pib)Sl]. There exist,

by the Hahn-Banach Theorem [B], fiEB* such that/,(&,) = 1 and

fiib) SpQ>) for all bEB. Since p is continuous there exists N'>0 such

that ||/;||g7V'for all*.

Embedding Theorem [S3]. Let Vb={fiib)}. Then VELiB, m)

and p — aV.

The proof is almost immediate.

Let TV be the set of natural numbers. If kEN, then Ahm is the space

of all bounded real-valued anti-symmetric functions on TV* with the

sup norm.

If a = (oi, • • • , ak)Emk let UaELiEk, m) and Ao = OiA • • • Aak

EAkm be defined by Uah = zZt-i ^<°< f°r an h — (&i> • • • ,hk) EEk, and

,   "1 nt

Id   • • • Oi

(Ao)(«i, • • • , nk) = det I.
»i tk

[ak   - - • ak ,

where, of course, ai=ia\, a\, • • • ). Furthermore, if f = (fi, • • • , f*)

Em*k then

ii(ai) • • • ZkiaiY

[Ao, fiA • • • Aft] = det.

fi(fl*) ■ • • Zkiak).

If EkQm and Oi, • • • , akEEk, then |]Ao|| is the volume of the

parallelepiped spanned by oi, • ■ • , ak. If similarly, bEiEk)kEmk

then ||Ao|| ^||A6|| if Ua a Ut, and this fact is vital for the validity of

K.P. In general, we write a~<b if Ua a Ut-

Let M be the set of all distance functions on A.km and let M'

= {/EM|/(Ao) SfiAb) whenever a<b}.
Let Qbe a fe-cell. If xECiQ,m) isLipschitzian, then dtx= {dx'/du*}

exists almost everywhere. We write dx for (dix, • • • , dkx)Emk and,

as above, Aox for dixA ■ ■ • Adkx.

Suppose that 73 is a Banach space contained in m. Then we can

identify A*73 with the appropriate subspace of Akm. Let Q be a yfe-cell

and PiQ, B) be the subset of CiQ, B) consisting of quasilinear func-
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tions. Then P(Q, B) is dense in C(Q, B). If zEP(Q, B) and fEM then
we define S/3 = 22/(Adz) • vol A where the summation is taken over

the oriented simplexes, A, of linearity of z. Let M" = {fEM'\&f is

lower semi-continuous on P(Q, B)}. Ii fEM" then the Frechet ex-

tension, L/,b, oi &/ is the Lebesgue area: P/,sx = lim inf,_x S/2 for each

xEC(Q, B) where zGP(<2, B). Let us write L/ for P/,m. We will make

use of the fact, proved like the two-dimensional case in [S3], that

Lj,Bx = ff(A.dx) =L/X for x in a subset of C(Q, B) which contains, in

particular, all Lipschitzian maps.

It is obvious that L/^L/.b, but not at all evident that the equality

holds, though this known for k = 2 and for a wide class of functions for

k>2.
Let e be the identity mapping on m.

Extension Theorem. Let cr>0, A Em and t: A-+m with ta(ae\ A),

i.e., a(ta—tb) ^aa(a — b) for all a, bEA. Then there exists an extension

T of t such that Ta(ae). Let \pi(a, c) = (ta)iA~<xa(c — a) for all aEA and

cEm, and let Tt(c) — ini {^i(a, c)|aG^4 }• Then we can let Tc= { Tt(c)}.

The proof is like that of the corresponding theorem in [S3]. First

suppose that cG^4- Then y\(a, c)—\pi(c, c) = (ta)i+o-a(c — a)—(tc)i

^cra(c—a)—a(tc — ta)'^Q and so T\A=t. If bEm then \pi(a, b)

—\l/i(a,c)=a[a(b—a)—a(c—a)]^aa(b—c) and so \ypi(a,b)—ipi(a,c)\

^a\\b-c\\. Thus | T{(b)\ ^\\tc\\ +a\\b-c\\ and TbEm for all b. If
dEmthen [Ti(b) — Ti(d)] gsup[<ra(5 — a) — aa(d — a)] tkcrcx(b— d),and
the proof is complete.

Let irna = b where bi = ai if i^n and 6i = 0 for i>n.

It is clear that x„—->y, in C(Q, m), ii and only if

max{a(xn(j>) - y(p)) \ p E (?}^0 and max{a(y(p) - xn(p)) \pE <2}->0.

Hence Txn-+Ty whenever x„—>y and Tcte.

Kolmogorov's Principle. 7/x, yEC(Q, m),if xay and if fEM",

then L/x g Lty.

Let zEP(Q, in) and Tae. Let w=Tz and wn=irnw. Then w is

Lipschitzian. Hence for almost all pEQ, all &GP*and s>0, a(sdwn(p)

■h+o(s)) =a(wn(p+sh) -wn(p)) -gsa(dz(p)-h). It follows that dw(p)

-<dz(p) and, since fEM", L,(Tz) =ff(Adw) ̂ ff(Adz) = S/Z.
If we let ty = x then ta(e\ range y) and, by the Extension Theorem,

there exists Tae with Ty = x. Let zn-^>y with znEP(Q, m) and S/z„

—>P/y. Then Tzn—*x and P/xglim inf L/(Tz„) glim S/z„ = Z,/y.
If seems appropriate to show that there exist A EM" such that A

is not symmetric.
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If aEmk, then Ra, the range of Ua, is the vector subspace of m

spanned by the components of a and 7?* is the space of linear func-

tional over Ra. If ZERt, let NaiZ)='ml{K\Kaic)^Zic) for all c

in Ra}. Let 4(Aa)=sup{ [Aa, ZiH^ ■ ■ • Af*]| NaiZ/) = 1}. Suppose

that a<b and TELiRb, Ra) is defined by Ua=To Uh. Let F*
EL(7C 7^) be defined by T*Z = Zo T. If TCa o £/a^f o I/., then
TiCao Ub^T*Z o Ub and 7V»(r*r) =/¥".(?). Thus

AiAa) = 8up{[Aft, r*fiA • ■ • AT*Zk] | iV.fty) ̂  l}

^ sup{ [A6,i»iA • • • Ai?*] | Nb{in) gl} = ^(Ai).

For each 7EA*»ra we set

(  p " 1
4(7) = inf < zZ AiAa/)   zZ (Ao0(») ̂  t(«) for all n E Nk\ .

i   i-l t—1 )

Then A EM'. It can be shown, by making suitable modifications in

the argument of [S3], that A EM".

We conclude with an interesting, though trivial, application. If

fEM" and <pECidQ, m) and Bi<p) = inf\L,x\xECiQ, m) and
x\dQ=4>\. Then 73(</>) ^Bi<j>') if <pa<f>'. The proof goes as follows:

There exists Tae with <p= Td>'. Let yECiQ, m) with y\dQ = cp'. Then

TyECiQ, m) and 7y|d<2=</>. Hence 73(<£) £LfiTy) SL,y.
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