BIBLIOGRAPHY

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, Gauthier-Villars, Paris, 1957.
- 2. I. C. Gohberg and M. G. Krein, Fundamental theorems on defect numbers, etc., Uspehi Mat. Nauk 12 (1957), 43-118.
 - 3. P. R. Halmos, An introduction to Hilbert space, Chelsea, New York, 1951.
- 4. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1957.
- 5. G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc. 10 (1959), 32-41.
- 6. R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik, Berlin, 1960.

University of Michigan

KIRZBRAUN'S THEOREM AND KOLMOGOROV'S PRINCIPLE¹

EDWARD SILVERMAN

Let B be a Banach space. A distance function p on B is a non-negative valued function which is continuous, positively homogeneous of degree one and subadditive. If A is a set and if x and y map A into B then we write xpy if $p(x(a)-x(b)) \leq p(y(a)-y(b))$ for all $a, b \in A$. If A is a k-cell, if B is Euclidean space, if p is the norm and if L is Lebesgue area, then Kolmogorov's Principle, K.P., asserts that $Lx \leq Ly$ if xpy [H.M.]. Lebesgue area is a parametric integral of the type considered by McShane [M], for smooth enough maps. In this paper we consider other such integrals, not necessarily symmetric, for which a type of K.P. holds. We conclude with a minor application to a Plateau problem.

The proof of K.P. follows from

KIRZBRAUN'S THEOREM. If $A \subset E^n$ and $t: A \to E^n$ is Lipschitzian, then there exists an extension T of t, $T: E^n \to E^n$, and T is Lipschitzian with the same constant as $t \in S$.

The proof of the version of K.P. in which we are interested depends upon an embedding of E^n in m, the space of bounded sequences [B],

Received by the editors January 11, 1965.

¹ This research was supported in part by National Science Foundation Grant No. GP634.

and an extension theorem, resembling that of Kirzbraun, for m.

Let α be the distance function on m defined by $\alpha(a) = \max \{ \sup a^i, 0 \}$. In a manner to be made precise in the Embedding Theorem, α is universal as a distance function.

Let B be a separable Banach space and p be a distance function on B. Let $\{b_i\}$ be dense on ∂K where $K = \{b \in B \mid p(b) \leq 1\}$. There exist, by the Hahn-Banach Theorem $[\mathbf{B}]$, $f_i \in B^*$ such that $f_i(b_i) = 1$ and $f_i(b) \leq p(b)$ for all $b \in B$. Since p is continuous there exists N' > 0 such that $||f_i|| \leq N'$ for all i.

EMBEDDING THEOREM [S3]. Let $Vb = \{f_i(b)\}$. Then $V \subset L(B, m)$ and $p = \alpha V$.

The proof is almost immediate.

Let N be the set of natural numbers. If $k \in N$, then $\Lambda^k m$ is the space of all bounded real-valued anti-symmetric functions on N^k with the sup norm.

If $a = (a_1, \dots, a_k) \in m^k$ let $U_a \in L(E^k, m)$ and $\Lambda a = a_1 \Lambda \dots \Lambda a_k \in \Lambda^k m$ be defined by $U_a h = \sum_{i=1}^k h_i a_i$ for all $h = (h_1, \dots, h_k) \in E^k$, and

$$(\Lambda a)(n_1, \cdots, n_k) = \det \begin{pmatrix} a_1^{n_1} & \cdots & a_1^{n_k} \\ \ddots & \ddots & \ddots \\ a_k^{n_1} & \cdots & a_k^{n_k} \end{pmatrix}$$

where, of course, $a_i = (a_i^1, a_i^2, \cdots)$. Furthermore, if $\zeta = (\zeta_1, \cdots, \zeta_k) \in m^{*k}$ then

$$egin{aligned} \left[\Lambda a, \zeta_1 \Lambda \, \cdot \, \cdot \, \cdot \, \Lambda \zeta_k
ight] = \, \det egin{bmatrix} \zeta_1(a_1) \, \cdot \, \cdot \, \cdot \, \zeta_k(a_1) \ \cdot \, \cdot \, \cdot \, \cdot \, \cdot \ \zeta_1(a_k) \, \cdot \, \cdot \, \cdot \, \zeta_k(a_k) \end{pmatrix}. \end{aligned}$$

If $E^k \subset m$ and $a_1, \dots, a_k \in E^k$, then $||\Lambda a||$ is the volume of the parallelepiped spanned by a_1, \dots, a_k . If similarly, $b \in (E^k)^k \subset m^k$ then $||\Lambda a|| \leq ||\Lambda b||$ if $U_a \alpha U_b$, and this fact is vital for the validity of K.P. In general, we write $a \prec b$ if $U_a \alpha U_b$.

Let M be the set of all distance functions on $\Lambda^k m$ and let $M' = \{ f \in M | f(\Lambda a) \leq f(\Lambda b) \text{ whenever } a \prec b \}.$

Let Q be a k-cell. If $x \in C(Q, m)$ is Lipschitzian, then $d_i x = \{\partial x^i / \partial u^i\}$ exists almost everywhere. We write dx for $(d_1 x, \dots, d_k x) \in m^k$ and, as above, Λdx for $d_1 x \Lambda \dots \Lambda d_k x$.

Suppose that B is a Banach space contained in m. Then we can identify $\Lambda^k B$ with the appropriate subspace of $\Lambda^k m$. Let Q be a k-cell and P(Q, B) be the subset of C(Q, B) consisting of quasilinear func-

tions. Then P(Q, B) is dense in C(Q, B). If $z \in P(Q, B)$ and $f \in M$ then we define $\mathcal{E}_f z = \sum f(\Lambda dz) \cdot \text{vol } \Delta$ where the summation is taken over the oriented simplexes, Δ , of linearity of z. Let $M'' = \{f \in M' \mid \mathcal{E}_f \text{ is lower semi-continuous on } P(Q, B)\}$. If $f \in M''$ then the Fréchet extension, $L_{f,B}$, of \mathcal{E}_f is the Lebesgue area: $L_{f,B}x = \lim\inf_{z \to x} \mathcal{E}_f z$ for each $x \in C(Q, B)$ where $z \in P(Q, B)$. Let us write L_f for $L_{f,m}$. We will make use of the fact, proved like the two-dimensional case in [S3], that $L_{f,B}x = \int f(\Delta dx) = L_f x$ for x in a subset of C(Q, B) which contains, in particular, all Lipschitzian maps.

It is obvious that $L_f \leq L_{f,B}$, but not at all evident that the equality holds, though this known for k=2 and for a wide class of functions for k>2.

Let e be the identity mapping on m.

EXTENSION THEOREM. Let $\sigma > 0$, $A \subset m$ and $t: A \to m$ with $t\alpha(\sigma e \mid A)$, i.e., $\alpha(ta-tb) \leq \sigma\alpha(a-b)$ for all $a, b \in A$. Then there exists an extension T of t such that $T\alpha(\sigma e)$. Let $\psi_i(a, c) = (ta)^i + \sigma\alpha(c-a)$ for all $a \in A$ and $c \in m$, and let $T_i(c) = \inf \{ \psi_i(a, c) \mid a \in A \}$. Then we can let $Tc = \{ T_i(c) \}$.

The proof is like that of the corresponding theorem in [S3]. First suppose that $c \in A$. Then $\psi_i(a, c) - \psi_i(c, c) = (ta)^i + \sigma \alpha (c-a) - (tc)^i \ge \sigma \alpha (c-a) - \alpha (tc-ta) \ge 0$ and so $T \mid A = t$. If $b \in m$ then $\psi_i(a, b) - \psi_i(a, c) = \sigma \left[\alpha (b-a) - \alpha (c-a)\right] \le \sigma \alpha (b-c)$ and so $\left|\psi_i(a, b) - \psi_i(a, c)\right| \le \sigma \left|b-c\right|$. Thus $\left|T_i(b)\right| \le \left|tc\right| + \sigma \left|b-c\right|$ and $Tb \in m$ for all b. If $d \in m$ then $\left[T_i(b) - T_i(d)\right] \le \sup \left[\sigma \alpha (b-a) - \sigma \alpha (d-a)\right] \le \sigma \alpha (b-d)$, and the proof is complete.

Let $\pi_n a = b$ where $b^i = a^i$ if $i \le n$ and $b^i = 0$ for i > n.

It is clear that $x_n \rightarrow y$, in C(Q, m), if and only if

 $\max\{\alpha(x_n(p)-y(p)) \mid p \in Q\} \rightarrow 0 \text{ and } \max\{\alpha(y(p)-x_n(p)) \mid p \in Q\} \rightarrow 0.$ Hence $Tx_n \rightarrow Ty$ whenever $x_n \rightarrow y$ and $T\alpha e$.

Kolmogorov's Principle. If $x, y \in C(Q, m)$, if $x \propto y$ and if $f \in M''$, then $L_f x \leq L_f y$.

Let $z \in P(Q, m)$ and $T\alpha e$. Let w = Tz and $w_n = \pi_n w$. Then w is Lipschitzian. Hence for almost all $p \in Q$, all $h \in R^k$ and s > 0, $\alpha(sdw_n(p) \cdot h + o(s)) = \alpha(w_n(p + sh) - w_n(p)) \le s\alpha(dz(p) \cdot h)$. It follows that $dw(p) \prec dz(p)$ and, since $f \in M''$, $L_f(Tz) = \int f(\Lambda dw) \le \int f(\Lambda dz) = \mathcal{E}_f z$.

If we let ty = x then $t\alpha(e \mid \text{range } y)$ and, by the Extension Theorem, there exists $T\alpha e$ with Ty = x. Let $z_n \rightarrow y$ with $z_n \in P(Q, m)$ and $\mathcal{E}_f z_n \rightarrow L_f y$. Then $Tz_n \rightarrow x$ and $L_f x \leq \lim \inf L_f (Tz_n) \leq \lim \mathcal{E}_f z_n = L_f y$.

If seems appropriate to show that there exist $A \in M''$ such that A is not symmetric.

If $a \in m^k$, then R_a , the range of U_a , is the vector subspace of m spanned by the components of a and R_a^* is the space of linear functionals over R_a . If $\zeta \in R_a^*$, let $N_a(\zeta) = \inf \{ K \mid K\alpha(c) \ge \zeta(c) \text{ for all } c$ in $R_a \}$. Let $A(\Lambda a) = \sup \{ [\Lambda a, \zeta_1 \Lambda \zeta_2 \Lambda \cdots \Lambda \zeta_k] \mid N_a(\zeta_i) \le 1 \}$. Suppose that $a \prec b$ and $T \in L(R_b, R_a)$ is defined by $U_a = T \circ U_b$. Let $T^* \in L(R_a^*, R_b^*)$ be defined by $T^*\zeta = \zeta \circ T$. If $K\alpha \circ U_a \ge \zeta \circ U_a$, then $K\alpha \circ U_b \ge T^*\zeta \circ U_b$ and $N_b(T^*\zeta) \le N_a(\zeta)$. Thus

$$A(\Lambda a) = \sup \{ [\Lambda b, T^*\zeta_1\Lambda \cdot \cdot \cdot \Lambda T^*\zeta_k] \mid N_a(\zeta_i) \leq 1 \}$$

$$\leq \sup \{ [\Lambda b, \eta_1\Lambda \cdot \cdot \cdot \Lambda \eta_k] \mid N_b(\eta_i) \leq 1 \} = A(\Lambda b).$$

For each $\gamma \in \Lambda^k m$ we set

$$A(\gamma) = \inf \left\{ \left. \sum_{i=1}^{p} A(\Lambda a_i) \right| \sum_{i=1}^{p} (\Lambda a_i)(n) \ge \gamma(n) \text{ for all } n \in \mathbb{N}^h \right\}.$$

Then $A \in M'$. It can be shown, by making suitable modifications in the argument of [S3], that $A \in M''$.

We conclude with an interesting, though trivial, application. If $f \in M''$ and $\phi \in C(\partial Q, m)$ and $B(\phi) = \inf \{ L_f x | x \in C(Q, m) \text{ and } x | \partial Q = \phi \}$. Then $B(\phi) \leq B(\phi')$ if $\phi \alpha \phi'$. The proof goes as follows: There exists $T \alpha e$ with $\phi = T \phi'$. Let $y \in C(Q, m)$ with $y | \partial Q = \phi'$. Then $T y \in C(Q, m)$ and $T y | \partial Q = \phi$. Hence $B(\phi) \leq L_f(T y) \leq L_f y$.

REFERENCES

- B. S. Banach, *Theorie des operations lineaires*, Monografje Matematyczne, Warsaw, 1932.
- H.M. R. G. Helsel and E. J. Mickle, The Kolmogoroff principle for the Lebesgue area, Bull. Amer. Math. Soc. 54 (1948), 235-238.
- M. E. J. McShane, Existence theorems for double integral problems of the calculus of variations, Trans. Amer. Math. Soc. 38 (1935), 549-563.
- S. I. J. Schoenberg, On a theorem of Kirzbraun and Valentine, Amer. Math. Monthly 60 (1953), 620-622.
 - S1. E. Silverman, A problem of least area, Pacific J. Math. 14 (1964), 309-331.
- S2. ——, Geodesics and Lebesgue area, Proc. Amer. Math. Soc. 15 (1964), 775-780.
- S3. ——, Definitions of Lebesgue area for surfaces in metric spaces, Riv. Mat. Univ. Parma 2 (1951), 47-76.

PURDUE UNIVERSITY