SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

EXAMPLES OF MINIMAL PARALLEL SLIT DOMAINS

JIRÔ TAMURA, KÔTARO OIKAWA, AND KEIJIRO YAMAZAKI

We call a plane domain D ($\infty \in D$) a minimal horizontal parallel slit domain if Re $a_1 \leq 0$ for every meromorphic univalent function in D having expansion $z+a_1/z+\cdots$ about ∞ . It is a horizontal parallel slit domain, i.e., a domain each boundary component of which is a point or a line segment parallel to the real axis. However, a horizontal parallel slit domain is not always minimal. Certain criteria for minimality have been obtained by Grötzsch [2, p. 188] and Jenkins [3, pp. 81–85]. From them it is seen that, if the projection of the complement of D on the imaginary axis has vanishing linear measure, then D is minimal. This is not a necessary condition; moreover, Grötzsch constructed an example of a minimal horizontal slit domain the projection of whose complement on the imaginary axis is an interval [3, p. 198]. We shall exhibit in Theorem 1 a simpler construction of a domain with the same nature.

A compact set E is said to be of class N_D if its complementary domain does not carry nonconstant analytic functions with finite Dirichlet integral. A compact set E is of class N_D if and only if its complementary domain is a minimal horizontal and vertical parallel slit domain (see Ahlfors-Beurling [1, pp. 109–112]). As a consequence, E is of class N_D if its projections on the real and imaginary axes have vanishing linear measure. Again this condition is far from being necessary; in fact, the above mentioned example of Grötzsch is, as is easily seen, of class N_D . We shall, moreover, exhibit an example of a set of class N_D whose projection on any line is an interval (Theorem 2).

THEOREM 1. There exists a minimal horizontal parallel slit domain the projection of whose complement on the imaginary axis is an interval.

PROOF. Consider $E_1 = e \times e$ where e is Cantor's ternary set. It is of class N_D since the ternary set has vanishing linear measure. Rotate it by 45° about the "center" of E_1 , and let the resulting set be E_2 . Then the complementary domain of E_2 is an example of the desired kind.

Received by the editors June 16, 1965.

THEOREM 2. There exists a set of class N_D whose projection on any line is an interval.

PROOF. Retain the above notations. $E = E_1 \cup E_2$ serves.

REFERENCES

- 1. L. A. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950), 101-129.
- 2. H. Grötzsch, Zum Parallelschlitztheorem der konformen Abbildung schlichter unendlich-vielfach zusammenhängender Bereiche, Leipziger Berichte 83 (1931), 185-200.
- 3. J. A. Jenkins, Univalent functions and conformal mapping, Springer, Berlin, 1958.

COLLEGE OF GENERAL EDUCATION, UNIVERSITY OF TOKYO