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We call a plane domain D (°o ED) a minimal horizontal parallel

slit domain if Re Oi^jO for every meromorphic univalent function in

D having expansion z-\-ai/z-\- ■ ■ ■ about oo. It is a horizontal

parallel slit domain, i.e., a domain each boundary component of

which is a point or a line segment parallel to the real axis. However, a

horizontal parallel slit domain is not always minimal. Certain criteria

for minimality have been obtained by Grotzsch [2, p. 188] and Jen-

kins [3, pp. 81-85]. From them it is seen that, if the projection of the

complement of D on the imaginary axis has vanishing linear measure,

then D is minimal. This is not a necessary condition; moreover,

Grotzsch constructed an example of a minimal horizontal slit domain

the projection of whose complement on the imaginary axis is an

interval [3, p. 198]. We shall exhibit in Theorem 1 a simpler con-

struction of a domain with the same nature.

A compact set P is said to be of class No if its complementary

domain does not carry nonconstant analytic functions with finite

Dirichlet integral. A compact set P is of class No if and only if its

complementary domain is a minimal horizontal and vertical parallel

slit domain (see Ahlfors-Beurling [l, pp. 109-112]). As a conse-

quence, E is of class No if its projections on the real and imaginary

axes have vanishing linear measure. Again this condition is far from

being necessary; in fact, the above mentioned example of Grotzsch

is, as is easily seen, of class Nr>. We shall, moreover, exhibit an exam-

ple of a set of class No whose projection on any line is an interval

(Theorem 2).

Theorem 1. There exists a minimal horizontal parallel slit domain the

projection of whose complement on the imaginary axis is an interval.

Proof. Consider Ei = eXe where e is Cantor's ternary set. It is of

class No since the ternary set has vanishing linear measure. Rotate

it by 45° about the "center" of P1; and let the resulting set be E2.

Then the complementary domain of E2 is an example of the desired

kind.
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Theorem 2. There exists a set of class No whose projection on any

line is an interval.

Proof. Retain the above notations. E = E/UE2 serves.

References

1. L. A. Ahlfors and A. Beurling,  Conformal invariants and function-theoretic

null-sets, Acta Math. 83 (1950), 101-129.
2. H. Grotzsch, Zum Parallelschlitztheorem der konformen Abbildung schlichter

unendlich-vielfachzusammenhangender Bereiche, Leipziger Berichte 83 (1931), 185-200.

3. J. A. Jenkins,  Univalent functions and conformal mapping. Springer, Berlin,

1958.

College of General Education, University of Tokyo


