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Huff and Rainville [l] have proved: If {pn(x)\ is generated by

A(t)\j/[xt] then a necessary and sufficient condition that {pn(x)} be a

Sheffer A-type m>0 is

(1) $(xt) = oFm[— ; Jij • • • ; bm; axt],        a a nonzero constant.

(For a discussion of the properties of Sheffer A -type sets and sets of

Rainville <r-type zero, we refer the reader to Rainville [2, Chapter

13]. All results not specifically referenced can be found in this work.)

It is the purpose of this note to generalize the Huff-Rainville theorem

by establishing a complete characterization of the Sheffer A -type

m>0 sets which are Boas and Buck sets.

Toward this end, suppose

00

(2) £#»(*)<"= A(t)+[xB(t)]
71 = 0

with

oc

£ <M» = $(t)        «A» ¥■ 0,
n—0

X,a„t"=A(t)        ao^O,
n-=0

and

00

£ /W+1 = B(t)        /S0 ̂  0.

Because i/v^O (n^O) we are assured that {pn(x)} is a simple set of

polynomials; specifically pn(x) =anxn-\-0(xn~1) with a„?^0 (w^O).

Associated with {pn(x)} is the unique differential operator J(x, D),

defined by the condition I(x, D)pn(x) =£„_i(x), n = l, 2, • • • , where

OO

J(x, P) = £ Tn(x)D"+\
n-0

D=d/dx and P„(x) =fnx"+0(xn-1) a polynomial of degree gw. Since
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tto^O, we conclude that to^O. Let B~\t) be the formal power series

inverse of Bit). We state our main result as

Theorem A. If \pnix)} is defined by (2), then a necessary and suffi-

cient condition for \pnix) ] to be Sheffer A-type m>0 is that there exist

a positive integer r which divides m and numbers bi, • ■ • , br not zero

nor negative integers such that

(3) *[*S(0] = oFr[- ; h, • • • , br; axB(t)]

for some nonzero constant a, with 73_1(i) a polynomial of degree s = m/r,

exactly.

Proof. Suppose that J£„(x)} is Sheffer A -type m. The expression

/(x, D)pnix) =p„_i(x) implies the recurrence relation

(4) a„(ra/0 + ra(ra — l)h + ■ ■ ■ + nin — 1) • • • (ra — m)tm) = on-i

for ra = l, 2, 3, • • • obtained by equating coefficients of xn_1. Since

the coefficient of n-an in (4) is a polynomial in (ra —1) of degree r

with l^r^rat, factorization yields the recurrence relation

r

(5) cnan II (ra + bk — 1) = o„_i
i-l

where c^O. Notice that bt = 0, —1, —2, • • • , for any k (l^fe^r)

would imply a< = 0 for some i. We have previously remarked that

an ^ 0 (ra ̂  0) hence bk is neither zero nor a negative integer for any k.

Equation (5) may be solved for an in terms of a0 and yields

<rna0

an =-

niJlihy
k—i

where (bk)n — bkibk+1) ■ • • ibk+n — 1). In the proof of Theorem 49,

[2, p. 141], it is shown that an = a0Bo\pn- Thus

icPo)~n

*"  =  -~r-

«! II (6*)-
A=l

and hence iKO =oFr[— ; b\, ■ • ■ , bT; t/cfio]. Then from (2)

00

(6) £ pnix)t» = A(i)oFr[- ;bu ■ • ■ , br; axB(t)]
n=0

where a = (cft)-1^0. To complete the proof of the necessity there re-
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mains to show that m/r = s is an integer, and that B~x(t) is a poly-

nomial of degree s. Now (6) is seen to imply that {pn(x)} is <r-type

zero with ff = Dj]i_1 (xD+bk-l). (See [2, p. 228].) Hence there

exists J*(<r) such that

oo / r \   k+l

(7)     J*(c)pn(x) = £ yk\ D II (xD + b,, - 1) \     pn(x) = pn_i(x)
*-0 V        i=l '

for » = 1, 2, • • • . Now (7) may be rearranged by collecting powers of

D into J(x, D), since J(x, D) is unique. That is, J*(a)pn(x) —pn-i(x)

and J(x, D)pn(x)=pn_i(x) imply J*(<r)=J(x, D). A simple check of

(7) proves that I(x, D) will contain polynomials Tk(x) (as coefficient

of Dk+1) with degree exactly m and no higher only if kr — m for one

k (say k = s), so that7,_i?^0 and 7„=7,+i= ■ • • =0. In view of this

and (7), we have

J*(t) = E yktk+1.
*=0

But J*(t)=B~1(t), [2, Theorem 79], so that B~l(t) is a polynomial

of degree s = m/r. This completes the proof of the necessity. Now

suppose that there exists a positive integer r which divides m and

numbers bi, • ■ • , br so that (3) holds for some nonzero constant a

with B~l(t) a polynomial of degree m/r — s, exactly. We need to show

that {pn(x)} is Sheffer A-type m. But these hypotheses imply {^>n(x)}

is tr-type zero with (t = D1[\^_1 (xD-{-bk — l). Since I*(t) =B_1(0, we

have

.-1 t r \   k+l

E 7* <D II (xD + 6, - l)\      pn(x)
(8) M       l     " ^

=    £    Tk(x)Dk+lpn(x) = />„_!(*) (5 ^  1)
*-0

for n = l, 2, • • • . A detailed check of the left-most expression in (8)

will verify that P„+,_i(x) is of degree rs exactly and that P*(x) is

always of degree grs. The middle term in (8) is J(x, D)pn(x) and

hence {^nOO} is Sheffer ^4-type rs = m. This completes the proof.

We have remarked in the course of the proof of Theorem A that

(6) implies {pn(x)} is <r-type zero for <r = £>!!*_! (xD+bk — 1). Con-

versely, if {pn(x)} is a-type zero for this a, then (6) holds. We may

thus re-word Theorem A as follows:

Theorem B. A necessary and sufficient condition that {pn(x)}, de-



1966] SHEFFER A-TYPE OF POLYNOMIALS 173

fined by (2), is Sheffer A-type m>0 is that there exists a positive integer

r which divides m and numbers bi, ■ ■ ■ , br, inone zero nor a negative

integer) such that {pnix)} is a-type zero for

r

f, m D J! i*D + bk - 1)
t-i

and B~lif) is a polynomial of degree s—m/r exactly.

Remark. The choice 5=1 reduces Theorem A to the Huff-Rainville

result since 73_](t) is of degree one in this case.

The author is indebted to Professor E. D. Rainville for his assis-

tance during the formulative stages of these ideas and to the anony-

mous reviewer who suggested many helpful changes.
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