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1. Introduction. In this note we consider an ordinary linear differ-

ential equation

" d'y
(1) l(y) = £ Aj(x) -f = 0

;=o dx1

whose coefficients are power series in one variable with nonzero radius

of convergence. Our main interest lies in the p-adic behavior of formal

power series solutions of (1) near a singular point. In the classical

case it is known [5, Chapter IV, Theorem 11.3] that in the vicinity of

a regular singular point, each formal power series solution has a radius

of convergence for which a nonzero lower bound may be given. It is

also known in the classical case that this need not hold if the singular-

ity is not regular. We shall show that in the />-adic case, a formal

power series solution has a nonzero radius of convergence (provided,

for example, the coefficients of each Aj are algebraic numbers). Re-

sults of this type are useful in the application of Dwork's deformation

theory [3] to singular hypersurfaces.

It has been noted by Igusa [6] that the classical existence theorems

are valid in the £>-adic case in the vicinity of an ordinary point. Pro-

fessor Igusa's brief reference to the "calcul des limites" may give the

erroneous impression that a comparison with a "dominating" differ-

ential equation is useful. We take this opportunity to clarify the

theory of ordinary points.

Let Z denote the ordinary integers, Z+ the positive integers, Z_

the negative integers, Q' the rational £-adic numbers, O' the ring of

integers of Q', fi the completion of the algebraic closure of Q' and ID

the ring of integers of 12. The £-adic valuation of Q. will be denoted

multiplicatively (\p\ =l/p) in §2 and additively (ord p=l) in the

remainder of this note.

2. Ordinary points. Let a>0, b>Q and let U be the polycylinder

of all (x, y)G^X^ such that |x| ga, \y\ g&. Let Fbe the space of all

holomorphic functions,/, on U. It is known that under the sup norm,

||/|| =sup(X,„)G{/ |/(x, y)|, F is a £>-adic Banach space [8]. Letting

Dx = d/dx, Dy = d/dy, we note that the well-known Cauchy inequality

means that if  (x0, yo)  is a center of   U then the linear function
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f^>iiljl)~1iDixDlf)ixo, yo) has norm not greater than a~*b~j for each

pair ii, j) of non-negative integers. The ultra-metric norm of 0 im-

plies that each point of U is a center of U and hence the endomor-

phism f^>DlxD1J, has operator norm, ||D*F^||, with upper bound,

(2) ||#X|| ^  |i!/!| <TV.

Thus, in particular, if gEF, \\g\\ =M, then ||Z>4| go-1, \\gDv\\ ̂ Mb~l

and hence

(3) || Dx + gDv\\ ^ Max(a-1, Mb-1).

Certainly, the differential equation

dy
(4) — = gix, y),

dx

has unique formal power series solution with no constant term,

(5) y = Bix + B2x> + • ■ ■

and precisely as in the "calcul des limites" [4, p. 46, equation (2) ], for

each j ^ 1,

(6) JIB; = <p[iDx + gDv)^g],

where <p is the linear function: /—*/(0, 0) on P. Since |/!| '^.p~'lil'~i\

it follows from (3) and (6) that the power series (5) converges for

|x| ^p-iK-p-v Min(a, b/M) and assumes values in the disk |y| < b.

The generalization may be stated without proof.

Theorem 1. Let a>0, h>0, ■ ■ ■ , b„>0 and let U be the polycylin-

der U= {(x, yu ■ • ■ , yn)\ \x\ ^a, \y{\ ^bit 1 ̂ i^n}. Let A, •••,/„

be holomorphic functions on U, |/,-| ^M{ for i — 1, 2, ■ • • , ra. Let

(I, Vi, ■ ■ ■ , Vn)EU, and let y = iyi, ■ ■ ■ , y„), 17 = (^i, • ■ ■ , Vn), then

the initial value problem

dy
— = C/1,/2, • • ■ ,fn)ix, y),
dx

yi& = v,

has a unique solution holomorphic in the disk,

I *|   £ #r»'C»-i)Miii(a, bi/Mh ■ ■ ■ , b„/M,t).

3. Asymptotic estimate. For aE®, sEZ+, let

(7) »(«,j) = «-1II(«+i),
J=0
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it being understood that 0(0, s) =s\ and that in the product the factor

corresponding to j= —a is to be deleted if j <0, jEZ—

The object of this paragraph is to find an asymptotic formula for

ord0(a, s).

Definition 1. An element, aG&, is said to be (^-adically) non-

Liouville if for sEZ, s—*A- °°, we have

(8) ord(a A- s) ^ 0(log s).

Let 2 be the set of all non-Liouville elements of ft. Clearly £ con-

tains the complement of £>' in ft. Furthermore the p-adic Liouville

theorem shows that if 13 is algebraic over Q, then there exists a con-

stant k' such that ord((3A-s)>k'A-k log 5 for all sEZ, where k log p

is the degree of @ over Q. (The £-adic Roth Theorem, [7], shows that

k may be replaced by any real number greater than 2/log p.) Hence

0 is certainly non-Liouville.

To each element of 8 we assign weights.

Definition 2. For «GS we define the weight, w(a), of a to be

w(a) = 0       if a G O,

w(a) = (p - l)-1       if a E £>',

w(a) = (1 - p-W)/(p -I) A- (r)p~l'{r]        if a E O, a G £)',

where in the last case, r = r(a) =Max«=z ord(a4-1), and r=[r]4-(r)

is the usual decomposition of r into integral and fractional parts.

We extend this last definition to polynomials.

Definition 3. The weight, w(g), of a polynomial, g, in one variable

whose roots lie in 2 is the sum of the weights of the roots (counting

multiplicities).

Let tt be an element of O such that ord ir—(p — l)-1. For a EZ-, let

Gi(t) = Z (~Tty/(jl(j A- a)), G,(t) = I) (irt)i/e(a,j).
i-o i-o

We need the formal identity

(9) a~lG2(t) = (exp ttOGiO),

which may be checked most easily by noting that a~lG2(t/ii) is a

formal power series solution of the differential equation //i(y) = 1,

where h = d/dt—lA-a/t and by further noting that h = g(t)-d/dt

•g(t)~x where g(t) =t~" exp t and using this second form to check that

(exp t)Gi(t/ir) is also a formal solution of the same differential equa-

tion.

Theorem 2. If aE%r\£>, then
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(10) ord 0(a, s) = wia) + 0(log s).

Proof. We consider three cases:

Case 1. a$D'. There exists mEZ+, 0EO such that a= —m+pr(l,

where r = ria) (cf. Definition 2) and r(/3)=0. Putting o-= [r(a)], we

have

ord fi 0' + m = £ WP'] + (r)WP°+1] = 0(1) + w(«>.
y-i >-o

Since dia, s)=dia, m)Jl'jZ? (j+PrP), the verification of (10) (with

0(log s) replaced by 0(1)) is immediate.

Case 2. aEZ. In this case 0(a, 5) differs by a constant from 5! and

hence (10) follows immediately from the Gauss formula which we

write in the form,

(11) s/ip - 1) - log(l + 5)/log p ^ ord 5! :g s/ip - 1).

Case 3. aEO', a E-Z. It is well known (and easily checked by means

of [l, Lemma l]) that (l-0"a_1ED'[<], while the coefficient of f

in this series is 0(a, 5)/5l. Thus ord dia, s)^ord 5! and hence using

(11), we have

(12) s/ip - 1) - log(l + 5)/log p ^ ord dia, s).

A more lengthy argument will be needed to establish an upper bound.

Letting Bj be the coefficient of t' in the series Gi, we deduce from (8)

(since a£?) and (11) that/-1 ord B~*0 and hence the domain of

convergence of Gi is the "open" disk: ord OO. The same holds for

exp irt so that (9) shows that G2 certainly converges in the open disk.

We may now conclude from (12) that this open disk is also the domain

of convergence of G2. Thus the Newton polygons [2, §1] of Cn and G2

have no sides of strictly positive slope, the Newton polygon of exp irt

is the x-axis and hence (9) shows that Gi and G2 have the same

Newton polygons. Using (8), there exist real numbers k, k' such that

if v is the function on the positive real line, vix) = — k log(l+x) — k',

then

(13) j/ip - 1) - ord/! - ord(j + «) ^ vij)

for al\jEZ+. The graph of v (since it is convex upward) must there-

fore bound the Newton polygon of Gi from below and thus

(14) j/ip- I) -old 6ia, j)^vij)

for a.l\jEZ+. Equation (10) follows from (14) and (12). This com-

pletes the proof.
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The following statement is an immediate consequence of (10).

Corollary. Let h be a monic polynomial whose roots lie in O^S

and let t be a fixed positive integer greater than all roots of h in Z. If

s, s'EZ, s>s'>t, then

8

(15) £ ord h(j) = w(h)(s - s') 4- O(log s).

Since ord h(s) ^0 for all sEZ, we conclude under the hypotheses

of the Corollary that if Si, s2, ■ ■ ■ , se is any set of distinct integers in

the interval [s', s], then

e

(16) - £ ord h(sj) ^ - w(h)(s - s') A- 0(log s).
i-i

Note: The verification of (15) and (16) required both upper and lower

bounds for ord 6(a, s).

4. Formal solutions. We generalize slightly the problem stated in

the introduction. We suppose the coefficients, A,, of (1) lie in ft((x)).

Multiplying the operator I by a suitable power of x, we may write

for each sEZ,

00

(17) /(*•) = T, 9t(s + j)x*",
;=o

where each &j is a polynomial of degree not greater than w and 3>o is

not identically zero. Note [5, Chapter IV, §12] that 4>0 is the classical

indicial polynomial of I (at x = 0). We recall that the ordinal, ord <t>,

of a polynomial, <I>, (say in one variable) is the maximal ordinal of its

coefficients and that

(18) ord $ = Inf ord *(x) ^ Inf ord 4>(s),

the first Inf being over all xG£3.

Let R(l) be the minimal real number such that A0, Ai, ■ ■ ■ , An

all converge in the punctured disk, °o >ord x>R(l). (In general

R(l) 9iR(A~1-l).) Writing At= £y at,jXi+', we have lim inf j-1 ord aiti

^—R(l) for each i and since <$,•($ 4-j) = £r=o aifjs(s — 1) • • •

(s— i-|-l), it follows that if we set lim inf j~l ord $;= —bx(l), then

— bx(l) 2^ —R(l). Conversely, it is clear that for each mEZ, l(xm) con-

verges for oo >ord x>bx(l) and hence A0, Ai, ■ ■ ■ , An all converge

on that set. Thus R(l)^b„(l) and hence R(l)=b„(l).

The   convex   closure    (in    Euclidean    2-space)    of    the    points
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{(j, ord Q,)\jEZ+} will be referred to as the Newton Polygon of

/ (at x = 0). From the above definitions, it is clear that —b«,il) is the

asymptotic slope of this polygon. The slope, — biil), of the first side

of the Newton polygon, is of importance in the following. The first

side has minimal slope, and hence &i(/)=P(0- We note that

biQ) = Sup/-1 (ord $0 — ord "Jj).
/si

Definition 4. The differential operator, I, is said to be raora-

Liouville (at x = 0) if biil) < » (certainly true if the A, all converge

in a nontrivial disk) and each zero of its indicial polynomial lies in ?.

With each non-Liouville, I, we associate the real number,

(19) bil) = biil) + w(*0) ^ *-(/) + m»(*o).

Theorem 3. Let I be non-Liouville, b^bQ), and let f=zZCix'<

y = zZB>x' oe elements of £2((x)) such that

ly=f,       ordCi + bj> 0(log/),

then ord P,+6/>0(log/). 7ra particular each power series solution of

(1) converges for ord x>b(/).

Proof. We may suppose ord d>0 = 0. We choose tEZ, t larger than

each integer root of d>0. Let It be the ideal x(S2[[x]] and let

T =  { £ B,x' E It | ord B, + bs > 0(log s)\ .

By (17) I is stable on both It and T (since b^biil)) and if r is the

natural projection of fl[[x]] onto It, then r-l maps polynomials into

P. Thus we may reduce to the case in which fET, yEIt- The endo-

morphism, l0: x*—><l>0(s)x\ is invertible in It and by (8) is also in-

vertible in P. Thus we may (wrthout other alteration) change the

hypothesis, ly =/, to read

(20) ly = hf.

If we write h= — (/ —10), then loH= 1 — If Hi and h (and hence IfH/)

has the property

/ixm0[[x]] C xm+1Q[[x]]

for all m. Thus IfH has inverse,

(21) ilb-'l)-1 = £ Uo-lhy,
r=0
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in It and the problem is that of checking stability on P. Using (17),

(20) and (21), and writing C(s) for C„ $(j, s) for <P/(s) whenever j>0,

we compute

00

(22) P. = Z E C(s0)P(so, »u ■ ■ ■ , *r),
r—0

the inner sum being over all r-tuples, (s0, Si, • • • , sr-i) such that

t^s0<Si<s2< ■ ■ ■ <sr — s, where

(23) (-l)'E(so, su ■ • • , sr) = II {Hsj - Si-i, Sj)/*o(sj)}.
y-i

Note that in (22), r^s and hence the formula for B, is a finite sum.

We factor <J>0 = g/}, where h is monic with roots in £), while g has no

roots in £). Since ord <i>o = 0, we have (writing bi for bi(l))

ord g(s) = 0,        ord $,-($) ^ ord $y 2: — jbi

for all sGZ, i^ 1. We now easily compute with the aid of (16),

ord E(so, si, ■ • • , sr) S — bi(sr — s0) — Z ord *(Jy)

£ - (bt+ w(h))(sr - so) A- 0(logs).

Since 5r = 5>s0,

ord(C(j0)P(^o, si, • • ■ , sr)) A- bs ^ (b - bi - w(h))(s - s0) A- 0(logs).

The theorem now follows from (22) using w(h) = w($0), b^b(l). Note:

1. The classical theory suggests the conjecture that if I is normal-

ized (An = 1), then the theorem would remain valid with bi(l) replaced

by R(l). This is false, even at ordinary points (e.g. dy/dx = y).

2. The result may be improved slightly. Everything said after

(18) would remain valid if for each j^l, the symbol ord <£>,- were re-

placed by Inf,€z ord &j(s).

3. The estimates 0(log s) may be made precise. If the roots of

$o in O' are algebraic over Q, let p be the number of these roots, let

£>2/log p and let e>0. If the term 0(log 5) in the hypothesis for/

is replaced by —ek log sA-0(l), then in the conclusion the O(log s)

term in the estimate for y may be replaced by —(2.5pA-e)k log s

4-0(1) and if Zy = 0, then the estimate becomes —l.5pk log s 4-0(1).
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