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1. Introduction. We shall show some properties of convergent

sequences of positive functions in the space of Mikusinski operators.

In particular we shall show that a sequence of non-negative integrable

functions can converge to a function which is strictly negative. We

shall consider the positive cone <?= {p\p(E£, p(t)^0 a.e. t^O} in

the space £ of locally integrable functions on the half-line, and we are

interested in the image of this cone under convolution; that is, the set

<t>(P which consists of all the convolution products <pp, where

(<t>p)(t) =   I    4>(t - u)p(u) du,        t^0,pE(P.
J 0

We shall give several conditions on <j> which are necessary and suffi-

cient to insure that the closure in £ of <p(? is the set </>3TC—the set of

all convolution products of <f> with non-negative locally finite Baire

measures. It is shown that if the closure in £ of </>(P properly contains

cpytl then it is all of £ (when <j> vanishes on no neighborhood of the

origin).

If/„ is convergent in £ to/ the sequence qn obtained by convolving

each fn with some fixed <t> is convergent to the convolution product of

<f> with /. In this sense convolution with </> provides a regular sum-

mability method and Lemma 1 isaTauberian theorem; it shows that

for bounded sequences all summability methods (i.e. all convergence

factors 4>) have the same strength. In Lemma 2 the boundedness con-

dition is replaced by positivity; in this case an additional condition

must be placed on the function <j> to get the Tauberian theorem.

Namely, there must exist a nonzero function k such that the con-

volution of <j> with k is non-negative. In the theorem this condition

is shown to be necessary as well as sufficient, and several equivalent

conditions are given.

2. Notation. By £ we mean the real vector space of real valued

functions on the half-line fSiO which are Lebesgue integrable on each

interval [0, T], T>0. As usual we identify functions which are equal

except for a set of measure zero (a.e.). Addition in £ is the usual

pointwise addition, and the field of scalars is the field of real numbers.

The space L[0, T] is, as usual, the vector space of functions which are
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Lebesgue integrable on [0, T]. Elements of £ will frequently be con-

sidered to be in L [0, T] by identifying / with its image under the

natural mapping of £ into L[0, T], P>0; operators on £ to £ will be

considered also to be operators on L[0, T] to L[0, T], T>0. £ is

given a topology by means of the collection of semi-norms ||/||r

= fo\f\ > P>0. A set or a sequence is bounded in £ if and only if it is

bounded in L[0, T] for every P>0.

We shall use the notation of the Mikusinski operational calculus to

the extent that

(i) juxtaposition of functions denotes convolution; thus, r=<j>f is

the element of £ obtained by the convolution of <f> with /;

(ii) h is the function in £ which is one for every t^O, and s = h_1

is the Mikusinski differentiation operator. The operator e_x*, \>0

is the shift operator; thus g=/e_x, is the function which is equal to

zero on [0, X] and g(t) =f(t-X) for <^X.

In order to avoid minor special arguments the symbol <j> will in-

variably denote the element of £ which vanishes on no neighborhood

of the origin; that is, Jo'l^l >0 f°r t>0. If there is a nonzero function

k such that (hj>)(t)^0 for all t^O it is easy to see (by shifting k to

the left if necessary) that there is a k such that k<j> is non-negative

and vanishes in no neighborhood of the origin. In fact we can take k<j>

to be strictly positive (or even strictly increasing and positive) on

t>0 by integrating the original k once (or twice). We shall take the

statement <j> can be made positive by convolution to mean that there is a

k such that (4>k)(t) >0 for t>0. We will say <j> has a positive real part

under convolution if there is a k such that Re(<f>k)(t) >0 for all />0.

We shall repeatedly use the basic theorem of Titchmarsh [l] on

the uniqueness of convolution products in the form which says that

if (<A/)(0=0 a.e. on [0, T] then/(0=0 a.e. on [0, T], and we shall

use the theorem which says that <f>£, the set of convolution products

of elements in £ with </>, is dense in £ [2], [3], [4].

The symbol ju shall denote a locally finite, non-negative Baire

measure on the half-line. For each /££ the convolution product//u

defined by

OWW =   f /(/-«)**(«)>        (§0,
J 0

is in £. The norm of a function in L[0, T] is equal to its norm when

it is considered as an absolutely continuous Baire measure, and

bounded sets in this norm are compact in the weak star topology for

the Baire measures—the topology of pointwise convergence for the

continuous linear functionals on the space of continuous functions on

[0, T] with the sup norm.
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3. The main theorem. The functions in this section will all be real

valued unless it is specified otherwise. There are two types of con-

vergence used with the Mikusinski operators. In the usual type of

convergence, which we will call (I), a sequence of /„££ converges

to zero if and only if there exists a <f>9^Q such that <£/„—>0 in the £

topology. In the second type of convergence, which we will call (II),

a sequence /„ in £ converges to zero if and only if there exists a se-

quence of <pn which converge to </>^0 in £ and 0„/„ converges to zero

in £. In Urbanik [5] it is shown that the sequence j ent \ is convergent

to zero with type (II) convergence. We will now show that there are

increasing sequences of positive functions which converge to zero with

type (I) convergence, and in fact, there is such a sequence convergent

to any integrable function.

Theorem. The following four conditions on a real <p are equivalent:

(i) <j> can be made positive by convolution;

(ii) every sequence pn^0 in £ such that <f>pn is convergent in £ is

bounded in £;

(iii) the closure in £, Cl(</> (P), of the set <j>(P= \<j>p\p(E£, £ = 0} is

the set </>3H = j <j>/x | /u. is non-negative Baire measure} ;

(iv) the set <f>6> is not dense in £.

We shall prove the theorem by means of several lemmas. In §4 an

example is given of a function which cannot be made positive by

convolution.

Lemma 1. Let f„ be a bounded sequence in £ and suppose <f>fn is

convergent in £. Then /„ is weak star convergent to a locally finite Baire

measure p and for all g in £ the sequence gfn converges in £ to gn.

Proof. The sequence /„ has a weak star limit point fi and the fact

that </>/„ is convergent in £ shows that/„ has only one limit point. The

gfn converge to gyi, in £ since the pointwise limit and the £ limit

must be the same.

Lemma 2. Let pn, n 3:0, be a sequence of non-negative functions in £.

If <p can be made positive by convolution, and if <f>pn is convergent in £,

then p„ is weak star convergent to a non-negative Baire measure ix and

for each gin £, gpn converges in £ to gp.

Proof. Since the weak star limit of non-negative functions is a

non-negative measure, in view of Theorem 1 it is only necessary to

show that the pn are bounded. An easy argument shows that if <p

can be made positive by convolution, the p„ must be bounded in £.

Lemma 3. If there exists a sequence pn^0 which fails to be bounded in
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£, but (ppn is convergent in £, then there exists a sequence qn such that

for every />0 the numbers /og,,-^00 as n—>*> but (j>qn—>0 in £.

Proof. If the hypothesis of the theorem holds there must be a se-

quence pn, w^O, of non-negative functions in £ such that <j>pn is

convergent to zero in £ as n—* °°, but such that pn is not a bounded

sequence in £. Let

T = Sup</ | there exists A > 0 such that J   pn < A for all n > 0> .

If T = 0 we can take the desired sequence qn, n S; 0, to be a subsequence

of the sequence pn, n^O. If T>0, for each e in (0, 7') there is a real

number A, such that f0t~lpn<At for all WgiO. Define /„,, and r„,e by

,    /A (Pn(t),        tE[0,T- e],

l0, t> T - e

and

jo, /e[o, r-e],

Kpnit),        t> T - e.

Since (<£/>»)(/) = (<f>ln,e)(t) on [0, P — e] it follows that the sequence

ln,t, w^O, converges as Baire measures on [0, T— e] to zero in the

weak star topology. Since ln,i(t)=0 for t>T—e the sequence con-

verges in the weak star topology to zero on the entire interval t^O.

Thus the non-negative, nondecreasing functions hln,e converge to

zero for each (^Oas n—■*«>. Lebesgue's bounded convergence theo-

rem, <j>hl„,t converges to zero in £ as w—>co and thus <f>hrnil=(f>hpn

—4>hln<t converges to zero in £ as n—> °o for each e. Since rn,t(t) =0 on

[0, T — e], m^O, wecan define the functions g„i€ by /*r„,< = e~<r~<),<Z„,e,

w>0, e in (0, T). Then 4>q„,e converges to zero in L as m—> °o for each

e but fl'qntl = A((n) is an unbounded sequence for each e in (0, T).

By taking a countable number of such sequences, say with e = \/k,

k = l, 2, ■ ■ ■ , and choosing an appropriate diagonal sequence qn we

get a sequence with the properties stated in the lemma.

We are now ready to begin the proof of our theorem.

Proof of Theorem. Lemma 2 shows that (i)=»(ii) and that (ii)

=>implies C1(</>(P) C<£9TC. A routine argument shows that each element

of 031Z is the limit in £ of a sequence from <f><P and thus C1(</>(P) =<£3TC,

which is (iii). Clearly (iii) implies (iv). Thus (i)=>(ii)=*(iii)=*(iv).

We will show that (iii) and (iv) each imply (ii). Suppose that (ii)

fails to hold. Let qn be as in Lemma 3. The functions en defined by

en(t) =exp [ — (hqn)(t)\ converge to zero in £ by Lebesgue's bounded
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convergence theorem, and thus <f>en—»0 in £ as «—><». For 2 2:0,

e~' — (1— t) 2:0, so that the functions r„, defined by en = h — hq„+rn,

are non-negative and <prn=<f>en—<j>h-\-<pqn converges in £ to — <ph as

n—*». Thus (iii) fails to hold.

Moreover, since <j>r„hh—>—4>hk+1 as w—>«> for each k = 0, 1, 2, • • •

(and since <£/8*£</><P for each £2:1) <f>P £E.C\(<j>(P) for every real poly-

nomial P. Since the polynomials are dense in £ we have <f>£ CC1(#(P)

and since <j>£ is dense in £ we have £CC1(<£(P) which proves that

(iv)^(ii).

Thus, (ii), (iii) and (iv) are equivalent, and it remains only to show

that one of these implies (i). We shall show that (iii) implies (i) by

means of the following lemma which follows immediately from the

Hahn-Banach Theorem [6].

Lemma 4. Let & be a Hausdorff locally convex topological vector space

over the real numbers. If C is a closed convex cone in S which contains no

nontrivial subspace of S there is a nontrivial linear functional F on 8

which is non-negative on C.

To show that (iii) implies (i) we note that the closed convex cone

0311 of (iii) contains no element — 0ju, ju£9TC, and according to Lemma

4 there is a nontrivial real linear functional F on the vector space of

real valued locally integrable functions (over the real field) which is

non-negative on </>3E; there is a corresponding real function b which

vanishes for t greater than some T and is essentially bounded on

[0, T] which determines the linear functional. In particular,

/» eo

F(<pe~x>) =   I    (<j>e-^)(t)b(t) dt, X 2; 0,
J o

=   |    <t>(t - \)b(l) dt, 0 ^ X ̂  T,
J x

/■ T-X

4>(T - X - u)b(T - u) du ^ 0,        0 g X g T.
o

Thus the function fc, defined by h(t) =b(T-t) on [0, T] and bi(t) =0
for t> T is such that the function <pb\ is non-negative on [0, T\. Let

r = Sup{/|bi(M) =0 a.e. on [0, T]} then r<T since F^0, and the

function b2 defined by b2e~T' = bi vanishes on no neighborhood of the

origin, while the continuous function <t>b2 is non-negative on [0, T — t]

so that <phbt is nondecreasing on [0, T—t] and strictly positive on

(0, T — t). A familiar type of argument shows that there are constants

An increasing sufficiently rapidly so that
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CO

k = Kb, £ Ane-^T~^>
n-0

has the property that (<pk)(t) >0 for t>0.

In the case of a complex <j> the Theorem needs to change only in

that (i) reads "there exists a (possibly complex valued) nonzero func-

tion k such that Re k<b(t) =^0," and (iv) reads "<j>£ is properly con-

tained in C\(<f>(P)." Here £ is still the real vector space of real valued

functions.

4. An example. The condition that <f> can be made positive by con-

volution is not a vacuous condition; there exist real functions which

cannot be made positive by convolution.

Example. The function f(t) = t~112 sin(l//) has a Laplace trans-

form/^) = fof(t)e-xtdt which is given by [7, p. 254, line 9]

e~V2x sin V2x
f(x)  =  \/t -> X > 0,

y/x

and this has zeros arbitrarily far out on the real axis. Thus for

any function k\ which has a Laplace transform, }(x)ki(x) has

zeros arbitrarily far out on the real axis. On the other hand, if </> is

any function which can be made positive by convolution with k, the

function ko obtained from k by taking k0(t) =k(t) for /£ [0, l], k0(t) =0

for t>l, is such that r=<j>kQ is strictly positive on (0, 1). k can be

taken to be continuous so that k0 is bounded, and if <p has a Laplace

transform, then f(x) =$(x)k0(x) is strictly positive for sufficiently

large real x. Clearly there is no k0 such that/(x)£o(*0 is strictly posi-

tive for all x in a neighborhood of infinity and thus/cannot be made

positive by convolution.
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