ELEMENTARY PROOF OF HU'S THEOREM ON ISOTONE MAPPINGS

N. C. HSU

1. Introduction. Let E be a partially ordered set of finite order, and let m, n be two natural numbers. We pose the following questions: Find a necessary and sufficient condition under which there exists a mapping f of E into a linearly ordered set $L=\{1<2<\cdots<t\}$ such that
(a) f is strictly isotone in the sense that $a<b$ in E implies that $f(a)<f(b)$ in L.
(b) The cardinal number of $f^{-1}(n)$ is not greater than m for every $n \in L$.

For the case where E satisfies the condition that every element of E is covered by at most a single element, a simple and elegant answer was given by Hu [2]. His proof is, however, far from simple. The purpose of this note is to provide a much simpler and more transparent proof of his theorem.
2. Preliminaries. Let E be a partially ordered set of finite order. We define the height of an element in E and the height of E in a usual way (see, e.g. [1]). By the depth of an element x in E, we mean the height of the element \hat{x} in the dual \hat{E} of E. By $h(E)$, we denote 1 plus the height of E. By E_{i} and E^{j}, we denote the set of all elements of depth $i-1$ in E and the set of all elements of height $j-1$ in E, respectively. For example, $E_{h(E)}$ is the set of all elements of maximum depth, and E^{1} is the set of all minimal elements. Evidently, $E_{h(E)} \subseteq E^{1}$ is valid. We denote $E_{i} \cap E^{i}$ by E_{i}^{j}, and the cardinal number of E by $|E|$. Finally, we put
$w_{i}(E)=\left|E_{h(E)}\right|+\left|E_{h(E)-1}\right|+\left|E_{h(E)-2}\right|+\cdots+\left|E_{h(E)+1-i}\right|$, for $i=1,2,3, \cdots, h(E)$. What makes our proof so simple is the following

Definition. Let m and t be two positive integers. E is called (m, t) bounded if and only if the following inequalities are satisfied:

$$
w_{i}(E) \leqq(i+t-h(E)) m, \quad \text { for } i=1,2,3, \cdots, h(E)
$$

Our goal is to give a proof of
Theorem [2, p. 847]. Let E be a partially ordered set of finite order
in which every element is covered by at most a single element. Then, E is (m, t) bounded if and only if there exists a strictly isotone mapping f of E into the linearly ordered set $L=\{1<2<\cdots<t\}$ such that the cardinal number of $f^{-1}(n)$ is not greater than m for every $n \in L$.
3. Proof of the theorem. We begin with a constructive proof of

Lemma 1. If a partially ordered set E is (m, t) bounded and also satisfies the condition
(0) $\left|E_{i}\right|>m$ for some i implies that for the same i

$$
\left|E_{i}^{1}\right|+\left|E_{i+1}^{1}\right|+\left|E_{i+2}^{1}\right|+\cdots+\left|E_{h(E)}^{1}\right| \geqq m
$$

then there exists a subset $F \subseteq E$ such that
(1) $|E-F| \leqq m$,
(2) either $E-F \subseteq E_{1}$ or $E-F \subseteq E^{1}$, and
(3) F is $(m, t-1)$ bounded.

Proof. In case $\left|E_{1}\right| \leqq m$, let $F=E-E_{1}$. Then $h(F)=h(E)-1$ and

$$
\begin{aligned}
w_{i}(F) & =w_{i}(E) \\
& \leqq(i+t-h(E)) m \\
& =(i+t-1-h(F)) m
\end{aligned}
$$

for $i=1,2,3, \cdots, h(F)$, and all three requirements are satisfied. In case $\left|E_{1}\right|>m$, we have $\left|E^{1}\right| \geqq m$ by the condition (0), and two subcases are conceivable; either $\left|E_{h(E)}^{1}\right|>m$ or $\left|E_{h(E)}^{1}\right| \leqq m$. If $\left|E_{h(E)}^{1}\right|$ $>m$, let $F=E-G$ where G is a set of m elements taken arbitrarily from $E_{h(E)}^{1}$. Then we have $h(F)=h(E)$ and

$$
\begin{aligned}
w_{i}(F) & =w_{i}(E)-m \\
& \leqq(i+t-h(E)-1) m \\
& =(i+t-1-h(F)) m
\end{aligned}
$$

for $i=1,2,3, \cdots, h(F)$, and all three requirements are satisfied. On the other hand, if $\left|E_{h(E)}^{1}\right| \leqq m$, let i_{0} be the integer satisfying both

$$
\left|E_{i_{0}}^{1}\right|+\left|E_{i_{0}+1}^{1}\right|+\left|E_{i_{0}+2}^{1}\right|+\cdots+\left|E_{h(E)}^{1}\right| \geqq m
$$

and

$$
\left|E_{i_{0}+1}^{1}\right|+\left|E_{i_{0}+2}^{1}\right|+\cdots+\left|E_{h(E)}^{1}\right|<m
$$

Needless to say, we have $i_{0}=h(E)$ when $\left|E_{h(E)}^{1}\right|=m$. Now, let

$$
F=E-\left(E_{i_{0}+1}^{1} \cup E_{i_{0}+2}^{1} \cup \cdots \cup E_{h(E)}^{1} \cup G\right)
$$

where G is a set of $m-\left(\left|E_{i_{0}+1}^{1}\right|+\left|E_{i_{0}+2}^{1}\right|+\cdots+\left|E_{h(E)}^{1}\right|\right)$ elements taken arbitrarily from $E_{i_{0}}^{1}$. Then $h(F)=h(E)-1$ and for $i=h(E)$ $-i_{0}+1, h(E)-i_{0}+2, h(E)-i_{0}+3, \cdots, h(F)$, we have

$$
\begin{aligned}
w_{i}(F) & =w_{i+1}(E)-m \\
& \leqq(i+1+t-h(E)-1) m \\
& =(i+t-1-h(F)) m .
\end{aligned}
$$

It remains to show that

$$
w_{i}(F) \leqq(i+t-1-h(F)) m
$$

for $i=1,2,3, \cdots, h(E)-i_{0}$. Suppose on the contrary that there exists a $j_{0}, 1 \leqq j_{0} \leqq h(E)-i_{0}$, such that

$$
\begin{aligned}
w_{j_{0}}(F) & >\left(j_{0}+t-1-h(F)\right) m \\
& =\left(j_{0}+t-h(E)\right) m .
\end{aligned}
$$

Assume that j_{0} is the smallest integer having this property. Then

$$
\left|F_{h(P)+1-j_{0}}\right|=\left|F_{h(E)-j_{0}}\right|>m
$$

from which we have $\left|E_{h(E)-j_{0}}\right|>m$ and therefore by the condition (0),

$$
\left|E_{h(E)-j_{0}}^{1}\right|+\left|E_{h(E)-j_{0}+1}^{1}\right|+\cdots+\left|E_{h(E)}^{1}\right| \geqq m
$$

Hence $h(E)-j_{0} \leqq i_{0}$ which implies $i_{0}=h(E)-j_{0}$. Consequently,

$$
\begin{aligned}
w_{j_{0}+1}(E) & =w_{j_{0}}(F)+m \\
& >\left(j_{0}+1+t-h(E)\right) m
\end{aligned}
$$

contrary to the assumption that E is (m, t) bounded.
Lemma 2 [2, p. 844]. Let E be a partially ordered set of finite order which is not (m, t) bounded. Then, there does not exist a strictly isotone mapping f of E into the linearly ordered set $L=\{1<2<\cdots<t\}$ such that the cardinal number of $f^{-1}(n)$ is not greater than m for every $n \in L$.

Proof. If E is not (m, t) bounded, there exists an i such that

$$
w_{h(E)-i+1}>(t+1-i) m .
$$

Suppose on the contrary that there exists a mapping f described in the statement. Then, since each of $f^{-1}(1), f^{-1}(2), \cdots, f^{-1}(t+1-i)$ consists of at most m elements, there must exist an $x_{i} \in E_{i}$ such that
$f\left(x_{i}\right)>t+1-i$. Since f is strictly isotone, there must exist an $x_{1} \in E_{1}$ such that $f\left(x_{1}\right)>t$, contrary to the assumption that $f(x) \leqq t$ for every $x \in E$.

Proof of the theorem. Suppose that E is (m, t) bounded. Since every element of E is covered by at most a single element, the condition (0) in Lemma 1 is satisfied by every subset of E, and a desired mapping can be constructed, by finite induction, by means of Lemma 1. The converse is an immediate consequence of Lemma 2.

Unsolved problem. Let m and t be two positive integers. Find a necessary and sufficient condition under which there exists a strictly isotone mapping f of a more general partially ordered set E into the linearly ordered set $L=\{1<2<\cdots<t\}$ such that the cardinal number of $f^{-1}(n)$ is not greater than m for every $n \in L$.

The author is indebted to T. C. Hu for personal communication.

References

1. G. Birkhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. Vol. 25., Amer. Math. Soc., Providence, R. I., 1948.
2. T. C. Hu, Parallel sequencing and assembly line problems, Operations Res. 9 (1961), 841-848.
[^0]
[^0]: State University of New York at Buffalo

