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1. Introduction. Let E be a partially ordered set of finite order, and

let m, n be two natural numbers. We pose the following questions:

Find a necessary and sufficient condition under which there exists a

mapping/of E into a linearly ordered set L= {1 <2 < • • • <t\ such

that

(a) / is strictly isotone in the sense that a<b in E implies that

f(a) <f(b) in L.   '
(b) The cardinal number of/_1(«) is not greater than m for every

nGL.
For the case where E satisfies the condition that every element of

E is covered by at most a single element, a simple and elegant answer

was given by Hu [2]. His proof is, however, far from simple. The

purpose of this note is to provide a much simpler and more transparent

proof of his theorem.

2. Preliminaries. Let E be a partially ordered set of finite order.

We define the height of an element in E and the height of E in a usual

way (see, e.g. [l]). By the depth of an element x in E, we mean the

height of the element x in the dual E of E. By h(E), we denote 1 plus

the height of E. By P, and E', we denote the set of all elements of

depth i — 1 in E and the set of all elements of height.;' —1 in E, respec-

tively. For example, E^e) is the set of all elements of maximum

depth, and P1 is the set of all minimal elements. Evidently, Pa^CE1

is valid. We denote P,/\E' by E{, and the cardinal number of E by

\E\. Finally, we put

Wi(E)   =     |  Eh(.B) I    +    |  Eh(E)-l |    +    I  Pn(£)-2|    +   '   •   ■   +    I   PB(J5)+l-i|   ,

for » = 1, 2, 3, • • • , h(E). What makes our proof so simple is the

following

Definition. Let m and t be two positive integers. E is called (m, t)

bounded if and only if the following inequalities are satisfied:

Wi(E) g (i + t- h(E))m,        for i = 1, 2, 3, • • • , h(E).

Our goal is to give a proof of

Theorem [2, p. 847]. Let E be a partially ordered set of finite order
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in which every element is covered by at most a single element. Then, E

is (raj, t) bounded if and only if there exists a strictly isotone mapping f

of E into the linearly ordered set L= [l<2< • • • <t\ such that the

cardinal number o//_1(ra) is not greater than m for every nEL.

3. Proof of the theorem. We begin with a constructive proof of

Lemma 1. If a partially ordered set E is (raz, t) bounded and also satis-

fies the condition

(0) | Ei\ >m for some i implies that for the same i

| Ei | + | Ei+i | + | Ei+21 + ---+| Eh(B) | ^ tn,

then there exists a subset FQE such that

(1) |£-F| =m,

(2) either E-FQEi or E-F^E1, and

(3) F is im, t — \) bounded.

Proof. In case |72i| r^m, let F = E — Ei. Then A(F) =A(E) — 1 and

WiiF) = WiiE)

g ii + t - A(7f))m

= (i + t-l- hiF))m,

for * = 1, 2, 3, • • • , A(F), and all three requirements are satisfied. In

case 17ii| >m, we have l^1! ^m by the condition (0), and two sub-

cases are conceivable; either |£j(£)| >m or |7iJ(b)| ^m. If |TSjc^)|

>m, let F = E — G where G is a set of tra elements taken arbitrarily

from 75j(B). Then we have A(F) =A(£) and

w^F) = w^E) — m

g (i + t- h(E) - \)m

= ii + t - 1 - HF))m,

for * = 1, 2, 3, • • • , A(F), and all three requirements are satisfied.

On the other hand, if | E„ib)| ^m, let i0 be the integer satisfying both

| e), I  + | El+i I  + | £-0+21 + • • • + | e\(B) I  ^ «

and

| £,0+11  + | Eio+21  +•••+! Ekos) |   < m.

Needless to say, we have i0 = A(£) when |Ej(^)| =m. Now, let
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F = E - (p!0+, U E)^, U • • • U £„(Jf) U G),

where G is a set of w —(| P^+ij + | P^l +•■•+! Pn(B)|) elements

taken arbitrarily from E\. Then h(F)=h(E) — l and for i — h(E)

-to+1, h(E)-ia+2, h(E)-i0 + 3, • • • , &(P), we have

Wi(F) = wi+i(E) — m

^ (i+l + t- h(E) - l)m

= (i + t- I- h(F))m.

It remains to show that

Wi(F) ^ (i + t- I - h(F))m

for i = l, 2, 3, • • • , h(E)—i0. Suppose on the contrary that there

exists a jo, 1 ^jo^h(E)—io, such that

*>h(F) > (jo+t-l- h(F))m

= (jo + t - h(E))m.

Assume that j0 is the smallest integer having this property. Then

| P*(F)+i_y0|   =   \ Fh(B)-}0\   >m

from which we have | Pn(B)_y0| >m and therefore by the condition (0),

I PB(B)_,-J    +   I Eh(E)-ja+l\    +   ■   ■   ■  +   | PB(B)|    ̂  w.

Hence h(E)—jo^io which implies i0 = h(E)—jo. Consequently,

w,o+i(P) = wJ9(F) + m

> (jo+l + t- h(E))m,

contrary to the assumption that E is (m, t) bounded.

Lemma 2 [2, p. 844]. Let E be a partially ordered set of finite order

which is not (m, t) bounded. Then, there does not exist a strictly isotone

mapping f of E into the linearly ordered set L = {1 <2 < • • • <t} such

that the cardinal number o//-1(w) is not greater than m for every n(EL.

Proof. If P is not (m, t) bounded, there exists an i such that

Wh(E)-i+i > (t + 1 — i)m.

Suppose.on the contrary that there exists a mapping /described in the

statement. Then, since each of/_1(1)./_1(2), • ■ • ,f~x(tA-l— i) con-

sists of at most m elements, there must exist an XjGP* such that
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fixi)>t-\-l—i. Since/ is strictly isotone, there must exist an X1EE1

such that/(xi)>2, contrary to the assumption that/(x) ^t for every

x£7i.

Proof of the theorem. Suppose that E is (ra?, t) bounded. Since

every element of E is covered by at most a single element, the condi-

tion (0) in Lemma 1 is satisfied by every subset of E, and a desired

mapping can be constructed, by finite induction, by means of Lemma

1. The converse is an immediate consequence of Lemma 2.

Unsolved problem. Let m and t be two positive integers. Find a

necessary and sufficient condition under which there exists a strictly

isotone mapping / of a more general partially ordered set E into the

linearly ordered set L={l<2< • • • <t\ such that the cardinal

number of/-1(ra) is not greater than m for every nEL.

The author is indebted to T. C. Hu for personal communication.
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