NILPOTENT ELEMENTS IN RINGS OF
INTEGRAL REPRESENTATIONS

IRVING REINER

1. Introduction. Let G be a finite group, and let R be a discrete
valuation ring of characteristic zero, with maximal ideal P==R,
and whose residue class field R=R/P has characteristic p>0. By an
RG-module we mean always a left RG-module which is finitely gener-
ated over R, though not necessarily R-torsionfree. Assume that the
Krull-Schmidt theorem is valid for RG-modules; this is certainly the
case when R is complete, or when R is a valuation ring in an algebraic
number field which is a splitting field for G.

In a recent paper [4] we introduced the integral representation ring,
denoted by A4 (RG), defined as the additive group generated by the
symbols {M}, one for each isomorphism class of R-torsionfree RG-
modules, with relations | M@®N}={M}+{N}. Multiplication in
A(RG) is defined by taking tensor products of modules.

The question arises as to whether the commutative ring A (RG)
contains any nonzero nilpotent elements. This is of special interest
in view of recent results of Green [2] and O’Reilly [3], who showed
that if k is a field of characteristic p, and if G has a cyclic p-Sylow
subgroup, then 4 (kG) has no nonzero nilpotent elements.

In contradistinction to this, we proved in [4]:

THEOREM 1. Let G* be a cyclic group of order n, and suppose that the
Krull-Schmidt theorem holds for RG*-modules. Assume that n & P?, and
if 2E P assume further that n 2P. Then A(RG*) contains at least one
nonzero nilpotent element.

The aim of the present note is to establish the following general-
ization.

THEOREM 2. Suppose that the group G contains a cyclic subgroup G*
satisfying the hypotheses of Theorem 1, and assume that the Krull-
Schmidt theorem holds for RG-modules. Then A(RG) contains at least
one nonzero nilpotent element.

We shall use the following notation. For M an RG-module, set
M=M/PM. Denote by My the RH-module obtained from M by
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restriction of operators, where H is a subgroup of G. For N an RH-
module, let N¢ denote the induced RG-module defined by

NG = RG ®ru N.

The trivial RG-module is R itself, on which each gEG acts as identity
operator. If M, N are RG-modules, the notation M | N means that
M is isomorphic to an RG-direct summand of N.

As general reference for the techniques and definitions used in this
note, we refer the reader to [1].

2. Preliminaries to the proof. Suppose hereafter that the hypoth-
eses of Theorem 2 are satisfied, so that G contains a cyclic subgroup
G* of order %n. If p is the unique rational prime contained in P, then
the assumptions about # readily imply that ;be| n, where

(2, p=2,
e =11, POdd,pEPZ,
2, podd, p & P

Hence G* contains a cyclic subgroup H of order p¢. Since the Krull-
Schmidt theorem is assumed valid for RG*-modules, it also holds for
RH-modules. Note that p*EP?, and if p=2, then p°€2P.

Let I denote the augmentation ideal of RH, so that

I= R(h-—1).

heH

Then
T= h};l R(k — 1) = R[x]/(x — 1)p* 7,

where the generator of the cyclic group H acts on the right-hand
module as multiplication by x. This shows that T is indecomposable,
whence so is I.

We shall show next that if K is a proper subgroup of H, and M is
any RK-module, then Tl MH is impossible. For if such a relation were
true, we could assume without loss of generality that M is an inde-
composable RK-module. Since K is cyclic, the indecomposable RK-
modules may be listed explicitly, and have K-dimensions 1, 2, - - -,
[K:1]. If M has dimension [K:1], then M = RK, and in that case
T| RH. This is impossible since RH is indecomposable. On the other
hand, if dim M<[K:1], then dim MZ=[H:K]-dim M <p*—1
=dim I, so also in this case T cannot be a direct summand of M%.

As in [4], define the RH-modules X and Y by
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X ==xRH+1I, Y==RH+R D h.
heH
Then X is a nonsplit extension of the factor module R (with trivial
action of H) by the submodule I, and hence X is indecomposable.
On the other hand, we showed in [4] that ¥ is an extension of R by a
submodule J, where R| 7. From these facts we were able to conclude
that

XYV~RoI, X not isomorphic to V.
Furthermore, there exist exact sequences
0>X—>RH—>R—O0

(1) -
0—->Y—>RH—I—-O.

Let  be a positive integer such that p/r, and let M be any RH-
module. Define a new RH-module M, consisting of the same elements
as M, but with a different action of H, namely, an element hEH acts
on M, in the same way that 4" acts on the original module M. Clearly,
if M is an extension of A by B, then M, is an extension of 4, by B,.
Further, if R| M then also R| M,.

We claim that X2V, is impossible. To prove this, note first of all
that V, is an extension of R by J,. If X=2V, then I=J,, and so
7227,. This cannot hold true because R|7, so that R|7,, while on
the other hand R/7. We have thus established our claim.

3. Proof of the main result. Keeping the notation of the preceding
section, we are now ready to prove Theorem 2. Let us define U=X¢,
V= Y¢. Since (RH)=~RG, from the exact sequences in (1) we obtain
a new pair of exact sequences

0— U — RG— R¢— 0,
0—V—RG—T9—0.

Since X==7 we conclude that T=V.
For any RG-module M of R-rank m, there is an exact sequence

0>U®:M—>RG® ---®RG— R @z M — 0,

where m summands occur in the center module. This implies by

Schanuel’s Lemma that the module U® r M depends only upon M.
Hence we may conclude that

UQrUXUQ@rVEEVRrUV QrV,
and therefore that { U} —{ V} has square zero in 4(RG).
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In order to complete the proof of Theorem 2, it suffices to show that
{U}—{V} is nonzero, that is, that U and V are not isomorphic.
Suppose that U=V, so that X¢=Y ¢, Then

(X®)g = (Y%g as RH-modules.

However, X | (X )y, and so also X I (Y9 pg. Let us apply Mackey’s
Subgroup Theorem to the module (¥ ¢)y. This yields

(T)a = Y (4® Vs -

In this formula, g ranges over a full set of representatives of the
(H, H)-double cosets of G. For each such g, K is the subgroup of H
given by K=HNgHg"!. The RK-module g® Y is a subspace of
RG®Y, and the action of K on g® ¥ is given by

ghg (g ®y) =g®hy, hEH ycVt.

Since X | (Y% y and X is indecomposable, we conclude that
Xl (g ® V) for some g, and hence that YI (g®7)g". By the remarks
in §2, this cannot occur if K is a proper subgroup of H. On the other
hand, suppose that K =H, so that gHg '=H. If & is a generator of
the cyclic group H, we may write g~hg="h", where pJr. Then the
RH-modules g®7 and 7, are isomorphic, and if X|(g®Y), then
X=7,. This is impossible by the results of §2. We have thus shown
that U and V are nonisomorphic, which completes the proof of the
theorem.

COROLLARY. Let R, be a valuation ring in an algebraic number field,
with maximal ideal P,. Suppose that G contains a cyclic sub-group G*
of order m, where nEP:, and if 2&P,, assume further that nE2P,.
Then A(RoG) contains at least one nonzero nilpotent element.

ProoFr. Even though the Krull-Schmidt theorem may not hold for
Ry,G-modules, we may nevertheless form the representation ring
A(R.G) defined as above. If L and L’ are R,G-modules, it is easily
seen that {L}={L'} in A(R,G) if and only if there exists an R,G-
module M such that L M=L'® M.

The construction given in Theorem 2, with R replaced by R,,
yields a pair of R,G-modules U,, Vysuch that U=RQ U,, V=RQ® V,.
However, the map A4(RiG)—A(RG) defined by L—»RQg,L is a
monomorphism. Therefore { Uy} —{ V,} is a nonzero nilpotent ele-
ment of A(R,G), and the Corollary is proved.
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NOTE ON ANALYTICALLY UNRAMIFIED
SEMI-LOCAL RINGS
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All rings in this paper are assumed to be commutative rings with a
unit element. If B is an ideal in a ring R, the integral closure B, of B
is the set of elements x in R such that x satisfies an equation of the
form x*+byx*14+ - - - +b,=0, where b,&EB! (=1, - - -, n). An
ideal B in R is semi-prime in case B is an intersection of prime ideals.
If R is an integral domain, then R is normal in case R is integrally
closed in its quotient field. If R is a semi-local (Noetherian) ring, then
R is analytically unramified in case the completion of R (with respect
to the powers of the Jacobson radical of R) contains no nonzero nil-
potent elements.

Let R be a semi-local ring with Jacobson radical J, and let R* be
the completion of R. In [2], Zariski proved that if R is a normal local
integral domain, and if there is a nonzero element x in J such that
pR* is semi-prime, for every prime divisor p of xR, then R is analyti-
cally unramified. In [1, p. 132] Nagata proved that if R is a semi-
local integral domain, and if there is a nonzero element x in J such
that, for every prime divisor p of xR, pR* is semi-prime and Ry is a
valuation ring, then R is analytically unramified. (The condition R,
is a valuation ring holds if R is normal.) The main purpose of this
note is to extend Nagata's result to the case where R is a semi-local
ring (Theorem 1). This extension will be given after first proving a
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