
NILPOTENT ELEMENTS IN RINGS OF
INTEGRAL REPRESENTATIONS

IRVING REINER

1. Introduction. Let G be a finite group, and let P be a discrete

valuation ring of characteristic zero, with maximal ideal P = irR,

and whose residue class field R = R/P has characteristic p^O. By an

7^G-module we mean always a left PG-module which is finitely gener-

ated over R, though not necessarily P-torsionfree. Assume that the

Krull-Schmidt theorem is valid for PO-modules; this is certainly the

case when P is complete, or when P is a valuation ring in an algebraic

number field which is a splitting field for G.

In a recent paper [4] we introduced the integral representation ring,

denoted by ^4(PG), defined as the additive group generated by the

symbols {MJ, one for each isomorphism class of P-torsionfree RG-

modules, with relations { M®N} = { M} Ar {N}. Multiplication in

A (RG) is defined by taking tensor products of modules.

The question arises as to whether the commutative ring A(RG)

contains any nonzero nilpotent elements. This is of special interest

in view of recent results of Green [2] and O'Reilly [3], who showed

that if k is a field of characteristic p, and if G has a cyclic p-Sylow

subgroup, then A(kG) has no nonzero nilpotent elements.

In contradistinction to this, we proved in [4]:

Theorem 1. Let G* be a cyclic group of order n, and suppose that the

Krull-Schmidt theorem holds for RG*-modules. Assume that nEP2, and

if 2EP assume further that nE2P. Then A(RG*) contains at least one

nonzero nilpotent element.

The aim of the present note is to establish the following general-

ization.

Theorem 2. Suppose that the group G contains a cyclic subgroup G*

satisfying the hypotheses of Theorem 1, and assume that the Krull-

Schmidt theorem holds for RG-modules. Then A (RG) contains at least

one nonzero nilpotent element.

We shall use the following notation. For M an PG-module, set

M = M/PM. Denote by Mu the PTPmodule obtained from M by
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restriction of operators, where 77 is a subgroup of G. For N an RH-

module, let NG denote the induced PG-module defined by

NG = RG ®rH N.

The trivial PG-module is R itself, on which each gEG acts as identity

operator. If M, N are PG-modules, the notation M\ N means that

M is isomorphic to an PG-direct summand of N.

As general reference for the techniques and definitions used in this

note, we refer the reader to [l].

2. Preliminaries to the proof. Suppose hereafter that the hypoth-

eses of Theorem 2 are satisfied, so that G contains a cyclic subgroup

G* of order ra. If p is the unique rational prime contained in P, then

the assumptions about ra readily imply that p"\ ra, where

[2,    P = 2,
e = jl,    podd, pE P\

[2,    p odd, p E P2-

Hence G* contains a cyclic subgroup 77 of order pc. Since the Krull-

Schmidt theorem is assumed valid for PG*-modules, it also holds for

PTPmodules. Note that p'EP*, and if p = 2, then p'E2P.

Let 7 denote the augmentation ideal of P77, so that

i = E *(* - i).
hen

Then

7 =  Z Rih - 1) ̂  P[x]/(x - l)p'~\
heH

where the generator of the cyclic group 77 acts on the right-hand

module as multiplication by x. This shows that 7 is indecomposable,

whence so is 7.

We shall show next that if A is a proper subgroup of 77, and M is

any PA-module, then 7| MH is impossible. For if such a relation were

true, we could assume without loss of generality that M is an inde-

composable PA-module. Since K is cyclic, the indecomposable RK-

modules may be listed explicitly, and have A-dimensions 1, 2, • • • ,

[A:l]. If M has dimension [X:l], then M=RK, and in that case

71 P77. This is impossible since P77 is indecomposable. On the other

hand,    if   dim If < [A: l],   then   dim MH = [77:A] dim M<p°-l
= dim 7, so also in this case 7 cannot be a direct summand of MH.

As in [4], define the PTPmodules X and Fby
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X = tt-RH A- I,        Y = tt-RH A- R-Jj h.

Then X is a nonsplit extension of the factor module P (with trivial

action of 77) by the submodule 7, and hence X is indecomposable.

On the other hand, we showed in [4] that Y is an extension of P by a

submodule J, where P| /. From these facts we were able to conclude

that

X ^ Y S R © 7,        X not isomorphic to Y.

Furthermore, there exist exact sequences

0^X->P77->P;->0
(1)

0->F^P77->7->0.

Let r be a positive integer such that p\r, and let M be any P77-

module. Define a new PP-module Mr consisting of the same elements

as M, but with a different action of 77, namely, an element h EH acts

on MT in the same way that hr acts on the original module M. Clearly,

if M is an extension of A by B, then Mr is an extension of Ar by Br.

Further, if R\ M then also R\ Mt.
We claim that X= Yr is impossible. To prove this, note first of all

that Fr is an extension of P by /,. If X^Yr then I~JT, and so

7=7r. This cannot hold true because P|/, so that R\jr, while on

the other hand R\I. We have thus established our claim.

3. Proof of the main result. Keeping the notation of the preceding

section, we are now ready to prove Theorem 2. Let us define U = X°,

V= Y°. Since (RH) a=RG, from the exact sequences in (1) we obtain

a new pair of exact sequences

0 -» U -> RG -> R° -* 0,

0 -* V -* PG -> 1° -* 0.

Since X^ F we conclude that P^F.

For any PG-module M of P-rank m, there is an exact sequence

0-» U ®RM^RG © •••©J?G^F®sI->0,

where w summands occur in the center module. This implies by

Schanuel's Lemma that the module U®r M depends only upon M.

Hence we may conclude that

U ®B U S* U ®R V £« V ®R U ^ V ®R V,

and therefore that { U} — { V} has square zero in A(RG).
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In order to complete the proof of Theorem 2, it suffices to show that

{ £7} — { V} is nonzero, that is, that U and V are not isomorphic.

Suppose that U^ V, so that XG^L YG. Then

iX°)B ^ (YB)H   as PP-modules.

However, X\iXG)H, and so also X\iYa)H. Let us apply Mackey's

Subgroup Theorem to the module (Fe)jr. This yields

(F«)H^Z*(g® Y)/.
a

In this formula, g ranges over a full set of representatives of the

(77, 77)-double cosets of G. For each such g, K is the subgroup of 77

given by K=HC\gHg~l. The 7?A-module g®Y is a subspace of

RG ® Y, and the action of A on g ® Y is given by

ghg-'ig ® y) = g ® hy,        hEH,    y E Y.

Since X\iY°)H and X is indecomposable, we conclude that

X\ig ®Y)KE for some g, and hence that X\ig® Y)KH. By the remarks

in §2, this cannot occur if A is a proper subgroup of 77. On the other

hand, suppose that A = 77, so that g77g~1 = 77. If A is a generator of

the cyclic group 77, we may write g~1hg = hr, where p\r. Then the

PTPmodules g®Y and Fr are isomorphic, and if X\ig®Y), then

X=Yr. This is impossible by the results of §2. We have thus shown

that U and V are nonisomorphic, which completes the proof of the

theorem.

Corollary. Let Ro be a valuation ring in an algebraic number field,

with maximal ideal PB. Suppose that G contains a cyclic sub-group G*

of order n, where nEP%, and if 2EPo, assume further that raE2Po-

Then AiR0G) contains at least one nonzero nilpotent element.

Proof. Even though the Krull-Schmidt theorem may not hold for

PoG-modules, we may nevertheless form the representation ring

AiRnG) defined as above. If L and L' are P0G-modules, it is easily

seen that {P} = {L'} in A iRoG) if and only if there exists an R0G-

module M such that L@M^L'®M.

The construction given in Theorem 2, with R replaced by R0,

yields a pair of P0G-modules U0, V0 such that U = R® U0, V = R® F0.

However, the map ^4(P0G)—>^4(PG) defined by L—*R®RoL is a

monomorphism. Therefore { U0} — { V0} is a nonzero nilpotent ele-

ment of AiRoG), and the Corollary is proved.
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NOTE ON ANALYTICALLY UNRAMIFIED
SEMI-LOCAL RINGS

LOUIS J.  RATLIFF, JR.1

All rings in this paper are assumed to be commutative rings with a

unit element. If B is an ideal in a ring R, the integral closure Ba of B

is the set of elements x in R such that x satisfies an equation of the

form x"4-fcix"-1-f- ■ ■ ■ A-bn = 0, where btEBl (i=l, • • • , n). An

ideal B in R is semi-prime in case B is an intersection of prime ideals.

If R is an integral domain, then P is normal in case P is integrally

closed in its quotient field. If P is a semi-local (Noetherian) ring, then

P is analytically unramified in case the completion of P (with respect

to the powers of the Jacobson radical of P) contains no nonzero nil-

potent elements.

Let R be a semi-local ring with Jacobson radical P and let P* be

the completion of P. In [2], Zariski proved that if P is a normal local

integral domain, and if there is a nonzero element x in J such that

pP* is semi-prime, for every prime divisor p of xP, then P is analyti-

cally unramified. In [l, p. 132] Nagata proved that if P is a semi-

local integral domain, and if there is a nonzero element x in J such

that, for every prime divisor p of xP, pP* is semi-prime and Pp is a

valuation ring, then P is analytically unramified. (The condition Pp

is a valuation ring holds if P is normal.) The main purpose of this

note is to extend Nagata's result to the case where P is a semi-local

ring (Theorem 1). This extension will be given after first proving a
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