UPPER BOUNDS FOR A BLOCH CONSTANT

POU-SHUN CHIANG AND A. J. MACINTYRE

1. Introduction. It seems that the first numerical results concerning Bloch's theorem for an annulus arise from two examples discussed by Valiron [1]. He used a slightly different constant from the one we consider. It is, however, easy to modify his construction. In our notation Valiron's methods lead to the inequality $B(2)<0.10025$. We give a very simple example to show that $B(2)<0.0884$, and another depending on elliptic functions to show that $B(2)<0.0746$.

Definition. Let $w=f(z)=z+a_{2} z^{2}+\cdots$ be regular in $|z|<1$, then we define $B(2)$ as the supremum of all numbers λ such that the Riemann surface of the inverse function $z=f^{-1}(w)$ contains a schlicht annulus of the form $\rho<|w|<2 \rho+\epsilon$ cut along a radius where $\epsilon>0$, and $\rho \geqq \lambda$. For the existence of $B(2)$ see [2].

Valiron's first example which was due to H. Cartan is as follows: Consider the function

$$
\begin{equation*}
w=f(z)=\frac{U(z)-U(0)}{U^{\prime}(0)}, \quad U(z)=\frac{Z}{(Z-1)^{2}}, \quad Z=e^{(z-1) /(z+1)} \tag{1}
\end{equation*}
$$

By elementary calculations, we find

$$
\begin{equation*}
B(2)<0.1156 \tag{2}
\end{equation*}
$$

The second example is as follows:
Consider the function
(3) $w=f(z)=\frac{U(z)-U(0)}{U^{\prime}(0)}, \quad U(z)=\frac{Z^{a}}{\left(Z^{a}-1\right)^{2}}, \quad Z=e^{(z-1) /(z+1)}$
for $|z|<1$ where a is a positive number.
In this example, $f(z)$ will omit the value

$$
\begin{equation*}
\frac{-U(0)}{U^{\prime}(0)}=\frac{-\left(e^{a}-1\right)}{2 a\left(e^{a}+1\right)}, \tag{4}
\end{equation*}
$$

and all points of the negative axis from

$$
\begin{equation*}
\frac{-1 / 4-U(0)}{U^{\prime}(0)}=\frac{-\left(e^{a}+1\right)\left(e^{a}-1\right)}{8 a e^{a}} \tag{5}
\end{equation*}
$$

to minus infinity.
Received by the editors February 15, 1965.

To obtain the best upper bound of $B(2)$ from this example, we must choose a to satisfy

$$
\begin{equation*}
e^{a}=3+\sqrt{ } 8 \tag{6}
\end{equation*}
$$

that is

$$
\begin{equation*}
a \fallingdotseq 1.7627 \tag{7}
\end{equation*}
$$

and have

$$
\begin{equation*}
B(2)<0.10025 \text {. } \tag{8}
\end{equation*}
$$

(We have deviated from Valiron only in our choice of a.)
These two examples of course also limit the constants obtained when the condition "schlicht" is dropped.
2. New examples. The following two examples will give us better estimates for $B(2)$.

Example 1. Let us construct the function $w=f(z)=z+a_{2} z^{2}+\cdots$ which is regular in $|z|<1$ and maps $|z|<1$ on the Riemann surface with a winding point of order 2 at $w=\alpha^{*}$ and a cut from $w=2 \alpha^{*}$ radially to infinity.

Consider the function w of z defined by
(1) $\quad V=\frac{z+i \alpha}{1-i \alpha z}, \quad U=V^{2}, \quad W=\frac{U}{(1+U)^{2}}, \quad w=c\left(W+\frac{1}{4}\right)$.

Note that $|z|<1$ is represented in this way on a Riemann surface of two sheets over the W plane which has $W=0$ as a winding point and the segments of the positive real axis from $1 / 4$ to infinity as cuts. The corresponding positions of winding point and end of cut in the $W+1 / 4$ plane will be $1 / 4$ and $1 / 2$. We also require $z=0$ to correspond to $w=0$.

Let us set $W=-1 / 4$ for $U=-\alpha^{2}$, then $U=-3 \pm \sqrt{ } 8$ and V $= \pm i \alpha$. Hence
(2)

$$
\alpha=\sqrt{ } 2-1
$$

It only remains to find the value of c such that $f^{\prime}(0)=1$, and then α^{*} will equal $c / 4$. For this, since

$$
\begin{align*}
\frac{d w}{d z} & =c \cdot \frac{1-U}{(1+U)^{3}} \cdot 2 V \cdot \frac{1-\alpha^{2}}{(1-i \alpha z)^{2}}=c \cdot \frac{1-V^{2}}{\left(1+V^{2}\right)^{3}} \cdot 2 V \cdot \frac{1-\alpha^{2}}{(1-i \alpha z)^{2}}, \tag{3}\\
\left.\frac{d w}{d z}\right|_{z=0} & =1 \quad \text { implies } \quad c=\frac{\left(1-\alpha^{2}\right)^{2}}{2 i \alpha\left(1+\alpha^{2}\right)}=-\frac{i}{\sqrt{ } 2} .
\end{align*}
$$

Thus the desired function is as follows;

$$
\begin{align*}
w & =-\frac{i}{\sqrt{ } 2}\left(W+\frac{1}{4}\right), & W & =\frac{U}{(1+U)^{2}} \tag{4}\\
U & =V^{2}, & V & =\frac{z+i(\sqrt{ } 2-1)}{1-i(\sqrt{ } 2-1) z}
\end{align*}
$$

Since $|c| / 4=\sqrt{ } 2 / 8<0.1768$, we have

$$
\begin{equation*}
B(2)<0.0884 \tag{5}
\end{equation*}
$$

Example 2. This example is in fact an extension of Example 1. Let us construct the function $w=f(z)=z+a_{2} z^{2}+\cdots$ which is regular in $|z|<1$ and maps $|z|<1$ on the Riemann surface with winding points of order 2 at $w=\alpha$ and at $w=2 \alpha$ and a cut from $w=4 \alpha$ radially to infinity.

By using a linear transformation between $|z|<1$ and $|Z|<1$ to map that point in $|z|<1$ which is the corresponding point of the first double point into the origin of the Z-plane, we get the system of equivalent regions, $\cdots S^{3}, S^{2}, S^{1}, S_{0}, S_{1}, S_{2}, \cdots$ in $|Z|<1$ (see Figure) where the upper and the lower indices indicate the corresponding sheets of the Riemann surface of the inverse function $z=f^{-1}(w)$ of the desired function. This system of regions, in fact, has infinitely many members related mutually by a transformation which is the composition of a pair of elliptic transformations,

$$
\begin{equation*}
\zeta^{\prime}=-\zeta \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\zeta^{\prime}-i \delta}{1+i \delta \zeta^{\prime}}=-\frac{\zeta-i \delta}{1+i \delta \zeta} \tag{7}
\end{equation*}
$$

in the following way, for instance,

$$
\begin{aligned}
& S_{0} \xrightarrow{(6)} S_{1} \xrightarrow{(7)} S^{1} \xrightarrow{(6)} S_{2} \xrightarrow{(7)} S^{3} \longrightarrow \\
& S_{1} \xrightarrow{(6)} S_{0} \xrightarrow{(7)} S^{2} \xrightarrow{(6)} S_{3} \xrightarrow{(7)} S^{\sigma} \xrightarrow{(7)} \text { etc. }
\end{aligned}
$$

By simple calculation, the composition (6) $\circ(7)$ of (6) and (7) will be a hyperbolic transformation

$$
\begin{equation*}
\frac{\zeta^{*}-i}{\zeta^{*}+i}=\left(\frac{1-\delta}{1+\delta}\right)^{2} \cdot \frac{\zeta-i}{\zeta+i} \tag{8}
\end{equation*}
$$

After this preparation, the desired function will be obtained by the
successive composition of linear transformations, an exponential and an elliptic function starting from the upper-half plane of a sheet of the Riemann surface.

Let us first find the linear transformation between the upper-half plane of the w-plane and the upper-half plane of the W-plane such that $w=\alpha, w=2 \alpha, w=4 \alpha, w=\infty$ go to $W=-1 / k, W=-1, W=1$, $W=1 / k$ respectively. The required transformation is

$$
\begin{equation*}
W=\frac{\sqrt{ } 3 w-(3+\sqrt{ } 3) \alpha}{(2 \sqrt{ } 3-3) w-(5 \sqrt{ } 3-9) \alpha} \tag{9}
\end{equation*}
$$

with $k=2-\sqrt{ } 3$. We also find that

$$
\begin{equation*}
W=W_{0}=-(7+4 \sqrt{ } 3) \fallingdotseq-13.92820, \tag{10}
\end{equation*}
$$

when $w=0$.
Next we want to find the transformation between the upper-half plane of the W-plane and the interior of the rectangle of the u-plane such that $W=-1 / k, W=-1, W=1, W=1 / k$ go to $u=-K+i K^{\prime}$, $u=-K, u=K, u=K+i K^{\prime}$ respectively. This is given [3] by

$$
\begin{equation*}
u=\int_{0}^{W} \frac{d W}{\left(\left(1-W^{2}\right)\left(1-k^{2} W^{2}\right)\right)^{1 / 2}} \tag{11}
\end{equation*}
$$

where
$K=\int_{0}^{1} \frac{d t}{\left(\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)\right)^{1 / 2}}, \quad K^{\prime}=\int_{0}^{1} \frac{d t}{\left(\left(1-t^{2}\right)\left(1-k^{\prime 2} t^{2}\right)\right)^{1 / 2}}$
and $k^{\prime}=\left(1-k^{2}\right)^{1 / 2}=(4 \sqrt{ } 3-6)^{1 / 2}$. Using tables [4] we have $K \fallingdotseq 1.60047$ and $K^{\prime} \fallingdotseq 2.73955$.

Let u_{0} be the corresponding value of W_{0}, then since $s n\left(u_{0}-i K^{\prime}\right)$ $=\left\{k \cdot \operatorname{sn}\left(u_{0}\right)\right\}^{-1}$, by using mathematical tables again we have

$$
\begin{equation*}
u_{0} \fallingdotseq-0.27148+2.73955 i . \tag{12}
\end{equation*}
$$

After (11) we continue to apply the following successive transformations:

$$
\begin{align*}
U & =u+K \tag{13}\\
V & =i \pi U / 4 K \tag{14}\\
\zeta & =\exp \left(V+\pi K^{\prime} / 4 K\right) \tag{15}
\end{align*}
$$

$$
\begin{align*}
Z & =i \frac{\zeta-1}{\zeta+1} \tag{16}\\
z & =\frac{Z-Z_{0}}{1-Z_{0} Z} \tag{17}
\end{align*}
$$

The values U_{0}, V_{0}, ζ_{0} and Z_{0} which are the values taken at $z=0$ are

$$
\begin{align*}
& U_{0} \fallingdotseq 1.32899+2.73955 i \\
& \mathrm{~V}_{0} \fallingdotseq-1.34438+0.65217 i \\
& \zeta_{0} \fallingdotseq e^{0.65217 i} \tag{18}\\
& Z_{0} \fallingdotseq-0.33815
\end{align*}
$$

Thus, we are almost in the position to construct the desired function $w=f(z)=z+a_{2} z^{2}+\cdots$. It only remains to find the value α such that $f^{\prime}(0)=1$.

For this, since

$$
\begin{align*}
\left.\frac{d w}{d z}\right|_{z=0}= & \frac{(4 \sqrt{ } 3-6) \alpha}{\left\{(2-\sqrt{ } 3) W_{0}-1\right\}^{2}} \cdot\left\{-\left(\left(1-W_{0}^{2}\right)\left(1-k^{2} W_{0}^{2}\right)\right)^{1 / 2}\right\} \tag{19}\\
& \cdot \frac{4 K}{\pi i} \cdot \frac{1}{\zeta_{0}} \cdot \frac{2 i}{\left(i-Z_{0}\right)^{2}} \cdot\left(1-Z_{0}^{2}\right)=1 \\
\alpha= & \frac{-\left(i-Z_{0}\right)^{2} \cdot \zeta_{0} \cdot \pi \cdot\left\{(2-\sqrt{ } 3) W_{0}-1\right\}^{2}}{\left(1-Z_{0}^{2}\right) \cdot 8 K \cdot\left(\left(1-W_{0}^{2}\right)\left(1-k^{2} W_{0}^{2}\right)\right)^{1 / 2} \cdot(4 \sqrt{ } 3-6)} \tag{20}
\end{align*}
$$

Hence by substituting $W_{0}, u_{0}, U_{0}, V_{0}, \zeta_{0}$ and Z_{0} with their numerical values, we have

$$
\alpha<0.1492
$$

Therefore

$$
B(2)<0.0746
$$

Remark. These new examples as well as Valiron's also limit an other kind of Bloch constant, say B^{*}, in which the schlicht circle: $\left|w-w_{f}\right|<P$ has its center and a whole diameter on the positive real axis with $P>B^{*}$. To find an upper bound of B^{*}, it would be better to set the end of the cut at $w=3 \alpha$ instead of at $w=4 \alpha$ in Example 2. In this case, the corresponding transformation of (9) will be

$$
W=\frac{-\sqrt{ } 8 w+(4+\sqrt{ } 8) \alpha}{(8-3 \sqrt{ } 8) w+(7 \sqrt{ } 8-20) \alpha}
$$

with $k=3-\sqrt{ } 8$. Hence subsequently $k^{\prime}=(6 \sqrt{ } 8-16)^{1 / 2}, K \fallingdotseq 1.582$ and $K^{\prime} \fallingdotseq 3.169$.

With the other transformations (11), (13), (14), (15), (16), (17) remain unchanged, we can also calculate the values $W_{0}, u_{0}, U_{0}, V_{0}, \zeta_{0}$ and Z_{0}, and similarly can find that α is less than 0.16 . Hence

$$
\begin{equation*}
B^{*}<0.08 \tag{21}
\end{equation*}
$$

References

1. G. Valiron, Sur le théorème de M. Bloch, Rend. Circ. Mat. Palermo 54 (1930).
2. A. J. Macintyre, On Bloch's theorem, Math. Z. 44 (1938), 536-540.
3. H. Kober, Dictionary of conformal representations, Dover, New York, 1952.
4. C. R. C. Standard mathematical tables, 12th ed., Chemical Rubber Publishing Co.

University of Cincinnati and
Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio

