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1. Introduction. It seems that the first numerical results concerning

Bloch's theorem for an annulus arise from two examples discussed by

Valiron [l]. He used a slightly different constant from the one we

consider. It is, however, easy to modify his construction. In our nota-

tion Valiron's methods lead to the inequality 73(2) <0.10025. We give

a very simple example to show that B{2) <0.0884, and another de-

pending on elliptic functions to show that B(2) <0.0746.

Definition. Let w=f(z)=z+a2z2 + • • • be regular in \z\ <1,

then we define 73(2) as the supremum of all numbers X such that the

Riemann surface of the inverse function z=f~1(w) contains a schlicht

annulus of the form p<|w| <2p + £ cut along a radius where e>0,

and p^X. For the existence of B(2) see [2].

Valiron's first example which was due to H. Cartan is as follows:

Consider the function

U(z) - <7(0) Z
(1) w = /(z) = —--—— ,        U(z) = -,    Z = e(-D/(,+!).

J U'(0) (Z - l)2

By elementary calculations, we find

(2) 73(2) < 0.1156.

The second example is as follows:

Consider the function

U(z) - (7(0) Z"
(3) w =/(z) = ——-— ,     U(z) =-,    Z = *<•"»>'w"
W J U'(0) (Z°- l)2

for | z| <1 where a is a positive number.

In this example, /(z) will omit the value

-U(P)= -(*>-!)

U'(0)       2a(e° + 1) '

and all points of the negative axis from

-1/4 - Z7(0)      - (e° + l)(e" - 1)

<7'(0) 8ae«

to minus infinity.
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To obtain the best upper bound of B(2) from this example, we

must choose a to satisfy

(6) e" = 3 + V8,

that is

(7) a ■= 1.7627,

and have

(8) 5(2) < 0.10025.

(We have deviated from Valiron only in our choice of a.)

These two examples of course also limit the constants obtained

when the condition "schlicht" is dropped.

2. New examples. The following two examples will give us better

estimates for B(2).

Example 1. Let us construct the function w=f(z) =z+a2Z2+ • • •

which is regular in \z\ <1 and maps \z\ <1 on the Riemann surface

with a winding point of order 2 at w=a* and a cut from w = 2a*

radially to infinity.

Consider the function w of z defined by

z + ia U / 1 \
(1) V =-,     U=V2,    W =-,    w = c[W + — )-

1 - iaz (1 + U)2 \ 4 /

Note that \z\ <1 is represented in this way on a Riemann surface

of two sheets over the W plane which has W = 0 as a winding point

and the segments of the positive real axis from 1/4 to infinity as cuts.

The corresponding positions of winding point and end of cut in the

W+l/4 plane will be 1/4 and 1/2. We also require 2 = 0 to corre-

spond to w = 0.

Let us set W=-l/4 for U= -a2, then L7=-3±V8 and V

= ±ia. Hence

(2) a = V2 - 1.

It only remains to find the value of c such that/'(0) = 1, and then

a* will equal c/4. For this, since

dw 1 - U 1 - a2 1 - V2 1 - a2
(3)       -=c-2V-= c-2V-,

dz (1 + U)3 (1 - iaz)2 (1 + V2Y (1 - iaz)2

dw . (1 - a2)2 i
-       = 1    implies    c = -=-•
dz *=o 2ia(l + a2) V2
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Thus the desired function is as follows;

i   / 1 \ U
(4) w=-(w-\-),        W =-,

V2 V 4 / (1 + U)2

z + t(V2 - 1)
U =V2, V =-—- •

1 - i(V2 - l)z

Since |c| /4 = V2/8 <0.1768, we have

(5) B{2) < 0.0884.

Example 2. This example is in fact an extension of Example 1. Let

us construct the function w=f(z) =z+a2z2-\- ■ ■ ■ which is regular

in \z\ <1 and maps \z\ <1 on the Riemann surface with winding

points of order 2 a.tw = a and at w = 2a and a cut from w — 4a radially

to infinity.

By using a linear transformation between |z| <1 and \z\ <1 to

map that point in \z\ < 1 which is the corresponding point of the first

double point into the origin of the Z-plane, we get the system of

equivalent regions, • • • 5s, S2, S1, S0, Si, Si, • ■ ■ in \z\ <1 (see

Figure) where the upper and the lower indices indicate the corre-

sponding sheets of the Riemann surface of the inverse function

z=/_I(w) of the desired function. This system of regions, in fact, has

infinitely many members related mutually by a transformation which

is the composition of a pair of elliptic transformations,

(6) f = - r

and

Z' - ib f - ib
(7)- = --—

1 + W 1 + ib?

in the following way, for instance,

_ (6) _ (7)   (6)   (7)
So-* Si-> S1 ——» Si-> S3->

c (6) c (7) e2 (6)   (7)   (7)Si->S0->52->S3->S°-► etc.

By simple calculation, the composition (6) o (7) of (6) and (7) will

be a hyperbolic transformation

f* - i _ /l - b\2 f - i

?* + i ~ \1 +b) 'YT1 '

After this preparation, the desired function will be obtained by the
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successive composition of linear transformations, an exponential and

an elliptic function starting from the upper-half plane of a sheet of

the Riemann surface.

Let us first find the linear transformation between the upper-half

plane of the w-plane and the upper-half plane of the PF-plane such

that w = a, w = 2a, w = 4a, w= °° go to W= — l/k, W= — 1, W=\,

W= l/k respectively. The required transformation is

V3w - (3 + V3)a
(9) W =-'-

(2V3 - 3)w - (5V3 - 9)a

with k = 2 — V3. We also find that

(10) W = Wo = - (7 + 4V3) = - 13.92820,

when w = 0.

Next we want to find the transformation between the upper-half

plane of the JF-plane and the interior of the rectangle of the M-plane

such that W=-l/k, W=-l, W=\, W=\/k go to «= -K+iK',
u= —K, u=K, u = K-\-iK' respectively. This is given [3] by

rw dW
(11) u =  I      -

Jo    ((1 - W2)(l - kW2))1'2

where

r1 dt r1 dt

J0   ((1 - t2)(l - kH2))1'2' Jo   ((1 - t2){\ - k'H2))1'2

and k' = (l-k2yi2 = (W3-6)112. Using tables [4] we have

K= 1.60047 and K'H2.73955.
Let uo be the corresponding value of Wo, then since sn(uo — iK')

= \k-sn(uo)}~ , by using mathematical tables again we have

(12) uo = - 0.27148 + 2.73955i.

After (11) we continue to apply the following successive transforma-

tions:

(13) U = « + K,

(14) V = ttU/AK,

(15) f = exp(F + ttK'/AK),
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r -1
(16) Z = i-,

f+1

Z - Zo
(17) z =- •

1 -Z0Z

The values U0, V0, Zo and Z0 which are the values taken at z = 0 are

U0 = 1.32899 + 2.73955*,

V0 = - 1.34438 + 0.65217*,
(18)

Zo = e0-65217',

Zo = - 0.33815.

Thus, we are almost in the position to construct the desired function

w=f(z) =z+a2z2-\- ■ ■ ■ . It only remains to find the value a such

that/'(0) = l.
For this, since

dw (4V3   —   6)a , 2 2      2     1/2,

,    .    dz z=o       j (2 - ^3)1^0 - 1JZ

IK   1 2i 2
— — 77-—i-d-Z.) = l,

7Tt      f o    (*   —   Zo)

= -(t-Z0)2-ro-7r-{(2- V3)iy0- l}2

(i - z2)-8is:-((i - wl)(i - k2wl)y'2-(W3 - 6) '

Hence by substituting Wo, u0, Uo, V0, Zo and Z0 with their numerical

values, we have

a < 0.1492.

Therefore

B(2) < 0.0746.

Remark. These new examples as well as Valiron's also limit an

other kind of Bloch constant, say B*, in which the schlicht circle:

| w — wf\ <P has its center and a whole diameter on the positive real

axis with P>B*. To find an upper bound of 73*, it would be better

to set the end of the cut at w = 3a instead of at w = ia in Example 2.

In this case, the corresponding transformation of (9) will be

-V8w + (4 + V8)«
(9') W =-—-

(8 - 3V8)w + (7V8 - 20)a
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with fc = 3-V8.  Hence subsequently jfe' = (6V8-16)1/2, K'= 1.582
andX' = 3.169.

With the other transformations (11), (13), (14), (15), (16), (17)

remain unchanged, we can also calculate the values W0, u0, Uo, V0, f o

and Z0, and similarly can find that a is less than 0.16. Hence

(21) 73* < 0.08.

„_   / I      \        s> s-    \—-*-■-—      I .-i •-1:

0<X3«4tfl \/\ /

W-PUNE Z-PLANE Z-PLflNE
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