SUCCESSIVE DIFFERENCES OF BOUNDED SEQUENCES

D. J. NEWMAN

Let x_0, x_1, x_2, \cdots be a bounded sequence and write $\Delta x_0 = x_1 - x_0$, $\Delta^2 x_0 = x_2 - 2x_1 + x_0$, \cdots and in general

$$\Delta^{n} x_{0} = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k} x_{n-k}.$$

Of course if $\Delta^n x_0 \equiv 0$ from some point on then $\{x_n\}$ is a constant sequence. On the other hand $\Delta^n x_0$ can approach 0 very rapidly without the sequence being a constant, e.g. if $x_n = 1/2^n$ then $\Delta^n x_0 = (-\frac{1}{2})^n$. We will determine the exact rapidity with which $\Delta^n x_0$ can go to 0 for a nonconstant sequence.

THEOREM. A. Let c>0. There exists a nonconstant bounded sequence $\{x_n\}$ with $|\Delta^n x_0| \leq (c/n)^n$.

B. Let $\{x_n\}$ be a bounded sequence for which $n | \Delta^n x_0 |^{1/n} \rightarrow 0$. Then $\{x_n\}$ is a constant.

PROOF. A. Choose

$$x_n = \sum_{k=0}^n \frac{(-\delta)^k}{k!} \binom{n}{k}$$

so that $\Delta^n x_0 = (-\delta)^n/n!$ and $|\Delta^n x_0| \le (c/n)^n$ when $\delta = c/e$. This sequence is certainly nonconstant and we need only show that it is bounded. We have

(1)
$$\sum_{k=0}^{n} \frac{(-\delta)^{k}}{k!} {n \choose k} = 1/2\pi i \int_{C} e^{-\delta z} (1+1/z)^{n} dz/z$$

where C is the circle $|z| = (n/\delta)^{1/2}$.

Write $z = (n/\delta)^{1/2}e^{i\theta}$ and observe that

$$e^{-\delta/n} \left| e^{-\delta z/n} (1 + 1/z) \right|^2$$

$$= e^{-\delta/n} \exp \left[-2(\delta/n)^{1/2} \cos \theta \right] (1 + 2(\delta/n)^{1/2} \cos \theta + \delta/n)$$

$$\leq 1,$$

since $e^{-t}(1+t) \le 1$ for all real t. It follows immediately that $\left|e^{-\delta z}(1+1/z)^n\right| \le \exp\left[\delta/n \cdot n/2\right] = e^{\delta/2}$ and so by (1) we obtain the bound $|x_n| \le e^{\delta/2}$.

Received by the editors October 18, 1965.

B. Write $F(z) = e^{-z} \sum x_n (z^n/n!)$ and note that along the positive axis

$$|F(z)| \leq e^{-z} \sum |x_n| \frac{z^n}{n!} \leq e^{-z} Ce^z = C.$$

Also

$$F(z) = \sum \Delta^n x_0 \frac{z^n}{n!}$$

and by hypothesis for every $\epsilon > 0$ a C_{ϵ} can be found so that $|\Delta^n x_0| \le C_{\epsilon} (\epsilon^2/2n)^n$. Hence, for all z,

$$|F(z)| \leq C_{\epsilon} \sum_{\epsilon} \left(\frac{\epsilon^{2}}{2n}\right)^{n} \frac{|z|^{n}}{n!} \leq C_{\epsilon} \sum_{\epsilon} \frac{(\epsilon |z|^{1/2})^{2n}}{(2n)^{n}n!}$$
$$\leq C_{\epsilon} \sum_{\epsilon} \frac{(\epsilon |z|^{1/2})^{2n}}{2n!}$$

so that

$$| F(z) | \leq C_{\epsilon} \exp \left[\epsilon | z|^{1/2} \right].$$

The proof is now completed by an application of the Phrágmen-Lindelöff theorems.

We quote Titchmarch [1]:

Let f(z) be analytic in $\left|\arg z\right| < \pi/2\alpha$, continuous in $\left|\arg z\right| \le \pi/2\alpha$. Suppose that $\left|f(z)\right| \le C$ on $\left|\arg z\right| = \pi/2\alpha$ and that $\left|f(z)\right| \le C_{\epsilon} \exp\left[\epsilon \left|z\right|^{\alpha}\right]$ for every $\epsilon > 0$ in $\left|\arg z\right| < \pi/2\alpha$. Then $\left|f(z)\right| \le C$ throughout $\left|\arg z\right| \le \pi/2\alpha$.

Applying this to f(z) = F(-z), $\alpha = \frac{1}{2}$ we conclude by (2) and (3) that $|F(-z)| \le C$ throughout the plane so that, since F is entire, it is a constant. Thus $e^{-z} \sum x_n(z^n/n!) = C$ and so $x_n = C$.

REFERENCE

1. E. C. Titchmarch, *The theory of functions*, 2nd ed., Oxford Univ. Press, New York, 1961; p. 178.

YESHIVA UNIVERSITY