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1. Introduction. In a recent paper [l], Wilf has given an extension

of the arithmetic-geometric mean inequality to the case of complex

numbers. His result may be stated as follows:

Theorem (Wilf). Suppose the complex numbers zi, ■ ■ ■ , zn, when-

ever ZiT^O, satisfy

(1) |argz,|  =*^y'       « = 1, 2, • • ■ ,n.

Then

(2) (cos 4>) | ziz2 • • • z„ I1'" g 1/ra | zi + z2 + • • • + z„ | ,

where equality holds if and only if either:

\p7^0, n even, and iafter rearrangement, if necessary)

Zi = • • • = z„/2 = Z(„/s)+i = • • • = zn = R-e1*;

or else

yp = 0    and   Zi = • • ■ = z„.

In the course of his proof of inequality (2), Wilf derives as an inter-

mediate auxiliary inequality the following:

(3) (costfOd zi|  + ■ • • + | s.| ) =  | f,+ • • • + ft,| .

Since inequality (2) follows readily from (3) by an application of the

arithmetic-geometric mean inequality for real numbers, it is clear

that inequality (3) plays the more fundamental r61e. In fact, inequal-

ity (3) may be interpreted as a "complementary" triangle inequality,

i.e., an inequality which "runs the other way" from the usual triangle

inequality. The complementary character of (3), relative to the usual

triangle inequality may be described as follows. The usual triangle

inequality states that, for any complex zi, • • • , zn, one has

0-(| «j |  + • • •+ | ft, |)  ^  |zi+ • • -+z„|

gl-(|zi| + •••+ k|).
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On the other hand, (3) states that, for suitably restricted zit ■ ■ ■ , z„

(i.e., such that |arg z,-| ^^ir/2 for *=1, ■ ■ ■ , n), the trivial con-

stant zero on the left of (4) can be replaced by cos \p (notice, how-

ever, that even in these restricted circumstances the constant one on

the right of (4) cannot be replaced by a smaller constant).

Inequalities which are "complementary" to the Cauchy inequality

for finite sums, to the Buniakowsky-Schwarz inequality for integrals,

etc., are to be found in the literature, see [2] and [3].

Hypothesis (1) may be interpreted geometrically as requiring that

the complex numbers in question lie within a cone of aperture 2\p^ir,

with vertex at the origin, and which is symmetric about the real axis.

This last assumption is, however, not essential (one could assume that

there is a real number 6 such that | arg z,—d\ gt^ ^=ir/2, which would

merely mean a rotation of the original cone through an angle 8).

The main purpose of the present note is to extend the comple-

mentary triangle inequality (3), first to a Hilbert space, and then to

a Banach space. Here one can again interpret geometrically the

hypothesis as requiring certain vectors to lie within a "cone."

2. Complementary triangle inequality in Hilbert space. Let 77 be a

Hilbert space, with real or complex scalars. Then one has the follow-

ing analogue of (3):

Theorem 1. Let a be a unit vector in 77. Suppose the vectors xi, • • • ,

xn, whenever ar,-^0, satisfy

Re(xi, a)
(5) 0 ^ r ^ ——!—- ,        i = I, ■ ■ ■ , n.

Ml
Then

(6) r(\\xi\\ + -..+ ||x.||) f£ II*! + • ■ • + xn\\,

where equality holds if and only if

(7) xi + ■ ■ ■ + Xn = r(\\xi\\ + • • • + ||*,||)a.

Proof. In view of the Schwarz inequality, applied to the vector

*»+••• A-xn and the unit vector a,

||*1 + • * • + *n|| ^   | (*1 +•••+*», o) |

^   | Re(*x + ■ • . + xn,a)\

=  | Re(*i, a) + • • • + Re(xn, a) | .

Now, by hypothesis (5),
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| Re(xi, a) + • • • + Re(x„, a) |   = Re(xJ; a) + • • ■ + Re(x„, a)

S r(||xi|| + • • • + ||xn||),

which yields (6).

Now for the equality condition in (6). If (7) holds, then it is clear

that equality holds in (6). Next, suppose the equality sign holds in (6).

Then it holds at every intermediate inequality in the argument just

given. That is to say, one has

(a) Xi + • • • + xn = (xi + • ■ • + xn, a)a,

(b) Im(xi + • • • + Xn, a) = 0,

and

(c) Re(x„ a) = r||x,j|,        for i = 1, • • • , ra.

Hence,

(xi + • • • + xn, a) = Re(xi + • • • + xn, a)

= Re(xi, «)+••• + Re(x„, a)

= r(||xi|| + • ■ • + ||xn||),

which, together with (a), gives (7).

Remark 1. Hypothesis (5) may be rewritten in a form which re-

sembles hypothesis (1) of Wilf's theorem. One has merely to put

r=cos \p, with 0^\l/^ir/2, to obtain from (5) the equivalent in-

equality

(Re(xj, <z)\ jr
„    ,       ) < + ^ — ■
Nl   /        2

Notice also that, in order to avoid distinguishing between zero

and nonzero xit it may be better to rewrite hypothesis (5) as follows:

(5') 0 ^ r\\xt\\ ^ Re(x,-, a),       i = 1, ■ • • , ra.

In the alternative form (5'), the hypothesis already looks a lot like

the conclusion of the theorem.

Corollary 1. Under the hypotheses of Theorem 1, one has

(8) r(||x,|| • • • WxnWyi" S — ||*i + • • • + x„||
ra

and
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\ n / n

where p<l and p^O. Equality holds in (8) (or in (9)) if and only if

*i + • • ■ + *n = K||*i|| + • • • + ||*n||)a

and

||*i|| = ■ • • = ||*„||.

Proof. From Hardy, Littlewood, and Polya [4, p. 26],

/||*l|l'+   ■   ■   ■   +   \\xn\\pylp\  ^  - (\\xi\\   +   ■■■+ \\xn\\),

\ n /    j

with equality if and only if \\xi\\ = ■ • • =||xn||. This, together with

Theorem 1, gives the desired result.

It should be noted that (8) can be thought of as taking p = 0 in (9).

Also, the apparently excluded case of p=l is just Theorem 1 itself,

where the condition \\xi\\ = • • • =||*B|| is not a part of the equality

condition.

Remark 2. In order to see that Wilf's theorem is a special case of

Corollary 1, one need only take 77 to be the complex numbers with

the usual scalar product, (zi, z2) =ziz2; the norm being the usual ab-

solute value, ||z|| = \z\. Putting a = l and r=cos \f/, with O^ip^w/2,

in (5) gives hypothesis (1), since then Re(xt-, a) is just Re x,-. The

equality condition in Corollary 1 implies that equality holds in Wilf's

theorem if and only if

(10) Xi +  • • • + xn = r( | Xi | +  • • • +   | *n | )

and

(11) | *i|   = • • • =   | *n|   (= X, say).

Transposing, and taking the real part of (10) gives

(Re Xi — r | Xi \ ) + • • • + (Re xn — r \ x„ \ ) = 0

which means that

Re xk = r | Xi \ ,        for k = I, ■ • ■ , n.

Thus,

xk =   | xh | (r ± i(l - r2y'2) = X(r ± i(l - r2)1'2),
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where the choice of sign depends on k. Let/ be the number of x*'s for

which the positive square root holds. Then

xi + • • • + xn = X[nr + i(J - in -/))(1 - r2)1'2].

Since, from (10), the imaginary part of Xi+ • • • +xn is zero, the

equality condition of Wilf's theorem follows.

Corollary 2. Let the "weights" qu ■ ■ ■ , qn be real, positive, and

such that gi+ • • • +g„ = 1. Under the hypotheses of Theorem 1 one has

(12) HMI*  •   •   •  IWI°"  =   II?!*! +   •   •   ■   + QnXnW
and

(13)      K?i|Hlp + • • • + ?»|W|p)1/p ̂ ||gi*i + • • • + qnxn\\,

where p <\ and p^O. Equality holds in (12) ior in (13)) if and only if

qiXi + • • • + q„xn = r(9i||xi|| + • • • + ?n||*»||)o

and

||xi|| = • • ■ = ||x„||.

Proof. From Theorem 1, replacing the vectors xi, • • ■ , x„, respec-

tively, by the vectors giXi, • • • , g„x„, one obtains

K?l||*l||   +   •   •   •   + 9n||x„||)   ^   ||?lXl +   •   •   •   + ?„X„||.

Equality holds if and only if

gi*i + • • ■ + qnxn = r(?i|WI + ■ • ■ + ?™||x„||)a.

Now, from Hardy, Littlewood, and Polya [4, p. 26], making use here

of qi+ ■ ■ ■ +g„ = l,

||xi||«' • • • ||x„||«» ) II    II   , ,11     II

,    II      II. _L _L       II      lUw.f    -9l   Xl     +   '   '   '   +«»*"'
(?i|Fi||P +   •   •   ■   +?n||xre||")1/'')

with equality if and only if ||xi|| = • • • =||xn||. This gives the desired

result.

Taking ra = 2 in Theorem 1, with xi = xand x2 = y, gives r(||x||+||y||)

g||x+y||; which, upon squaring both sides, yields

H|x|!-||y|| - J(l " r>)i\\x\\2 + ||y|h) g Re(x, y),

where equality holds if and only if x+y = r(||x||+||y||)a. This in-

equality may be regarded as an inequality complementary to

Schwarz's inequality. The referee has pointed out that this "is a

weakened form of the inequality cos 2\[/ = 2r2 — 1 gRe(x, y)/||*|| -H3^11 >
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which is intuitively clear." This last inequality, upon multiplying

through by 2||*|| -||y|| and then completing the square, becomes

'2(MI + Nl)2 + (i - '2)(IMI - IMI)2 ^ II* + yll2-
The referee's inequality may be proved by applying the Schwarz in-

equality, in the form — [*, >]^{[a;, *]-[y, y]}1/2, to the "new"

(semi-definite) scalar product [x, y] = Re(x, y) — Re(x, a)-Re(y, a).

Upon transposing, and dividing through by |[*|l •||y||, one obtains

Re(*, a) Re(y, a) _    IV   _ /Re(x, g)\n r   _ /Re^y-^ "«

\\4    '   Ml V     \   ||*||    yJL1     V   \\y\\   )]f
Re(*. y)

= 11*11 w
which implies that 2r2— l^Re(x, y)/||*|| •||y||-

Theorem 2. Let oi, • • • , am be orthonormal vectors in H. Suppose

the vectors X\, • ■ ■ , x„, whenever x.^O, satisfy

Re(xi, ak)
(14) 0 ^ rk ^ —rr—r- ;        i = I, ■ • ■ ,n; k= I, ■ ■ ■ , m.

11**11
Then

(15) (r\ + • • • + ^)1/2(||*i|| + ■ • ■ 4- \\xn\\) g ||*i + • • • + «.||,

where equality holds if and only if

(16) Xi+ ■ ■ ■ + x„ = (\\xi\\ + • • • + ||*B||)(riOi + ■ • • + rmam).

Proof.   In  view  of  Bessel's inequality,  applied  to  the vector

*i+ • • • -\-xn and the orthonormal sequence ai, • • ■ , am,

m

||*1 +   •   •   •   + *B||2  ^   2Z    I  (*1 +   •   •   •  + *», <**) I2
*-l

m

^ X [Ref>, + ■ • • + xn, ak)]2
*—1

m

= X [Re(*i, ak) + • • • 4- Re(xn, ak)]2.
k-l

Now, by hypothesis (14),

Re(xi, «*)+••• + Re(*B, aA) ^ r*(||*i|| + • • • + ||*B||),

which yields (15).
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Now for the equality condition in (15). If (16) holds, then it is

clear that equality holds in (15). Suppose the equality sign holds in

(15). Then it holds in every intermediate inequality in the argument

just given. That is to say, one has

m

(a) xi + • ■ ■ + xn = zZ (xi + - - - + xn, ak)ak,
*=i

(b) Im(xi + • • • + xn, ak) = 0,        k = 1, • • • , m,

and

(c) Re(xi, ak) = n..||xt||;       i = 1, • • • , »; k = 1, • • • , m.

Hence,

(xi + • • • + xn, ak) = Re(xi + • • • + x„, ak)

= Re(xi, ak) + • • • + Re(x„, ak)

= r*(||xi|| + • • ■ + ||x„||),

which, together with (a), gives (16).

Remark 3. Theorem 2 continues to hold if m= °o, that is, if there

are infinitely many vectors ak.

Remark 4. The analogues of Corollaries 1 and 2 follow readily

(with r replaced by (r?+ • ■ ■ +r^,)1/2), and will not be stated sepa-

rately.

3. Complementary triangle inequality in Banach space. Let 73 be

a Banach space, with real or complex scalars. Then one has the fol-

lowing analogue of Theorem 1 of §2.

Theorem 3. Let Fbe a linear functional of unit norm on 73. Suppose

the vectors Xi, • • • , x„, whenever x.-^O, satisfy

Re Fxi
(17) 0|r^^-,        »-l, ••-,«.

IN I
Then

(18) r(||xi|| + • • -+IM) ^||xi+ • • • +x„||,

where equality holds if and only if both

(19) F(xi + • • • + xn) = ri\\xi\\ + • • ■ + ||x„||)

and

(20) F(xi + • • • + Xn) = ||*i + • • • + x„||.
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Proof. Since the norm of P is unity, one has | Fx\ ^[||x|| for any

x in B. Applied to the vector Xi + • • • +x„ this inequality yields

||*i + • • • + *B|| s£   | F(xi +•-•+#») |

^   | Re F(xi + ■ ■ ■ +xn)\

=  | Re Fxi + • • • + Re Fxn \ .

Now, by hypothesis (17),

| Re Fxi + • • • + Re Fx„ |   = Re Fxi + • • • + Re Fxn

^ r(\\xi\\ + ■ ■■+ ||*„||),

which yields (18).

Now for the equality condition in (18). If (19) and (20) hold, then

it is clear that equality holds in (18). Next, suppose the equality sign

holds in (18). Then it holds in every intermediate inequality in the

argument just given. That is to say, one has

(a) ||*i + • • • + xn\\ =  | F(xi +•••+**)!,

(b) Im F(xi 4-+ xn) = 0,

and

(c) Re Fxi = r||*,-||,        for i = I, ■ ■ ■ , n.

Hence,

F(xi + •••+*„) = Re F(xi + ■ ■ ■ + xn)

= Re Pxi + • • • + Re Fxn

= kNI + ■ ■ • + IM ),
which is (19); and this, together with (a), gives (20).

Remark 5. As in the case of Theorem 2, analogues of Corollaries 1

and 2 follow readily.

The next theorem bears the same relation to Theorem 3 as Theo-

rem 2 bears to Theorem 1.

Theorem 4. Let F\, • ■ • , Fm be linear functionals on B, each of unit

norm. Let

| Fix |2 + • • • +  |Fmx|2
C=    SUp-rr-rr- ;

**0 ||x||2

it then follows that lgc^m. Suppose the vectors xi, ■ ■ ■ , x„, whenever

Xi^O, satisfy
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Re FkXi
(21) 0 ^ rk ^ ;        i = 1, • • • , »; k = 1, • • • , m.

INI
TAera

2 2

(22) (--^—--J    (||xi|| + • • • + ||x„||) ̂  ||xi + • • • + aw||,

where equality holds if and only if both

(23) F*(x, + ■ ■ • + Xn) = rtdWI +-h ||*»||),    A = 1, • • • , f»,

ararf

m

(24) Z [F,(xi + • • ■ + xn)]2 = c||xi + • ■ • + xn||2.
*-l

Proof. From the definition of the number c, one has

m

c\\xx + • • • + xn||2 ̂  zZ   I fitfo + • • • + *») |2
t-i

m

^ 1Z [Re Fkixi + ■ • • + x„)]2
k=l

m

= Z [ReFAxi+ • • • + ReF*xn]2.
t-i

Now, by hypothesis (21),

ReF**! + • • • + ReF*x„ ^ rt(||xi|| + • • • + ||xn||),

which yields (22).

Now for the equality condition in (22). If (23) and (24) hold, then

it is clear that equality holds in (22). Next, suppose the equality sign

holds in (22). Then it holds in every intermediate inequality in the

argument just given. That is to say, one has

m

(a) c||xi + • ■ • + xn||2 = zZ I Pkixi +•••+*») |2,
k=l

(b) Im Fkixi + • ■ • + xn) = 0,        k = 1, ■ ■ ■ , m,

and

(c) Re FkXi = r*||*,-||;       i = 1, • • • , n; k = 1, • • • , m.

Hence,
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Fk(xi H-\- xn) = Re Fk(xi + • • • + xB)

= Re Fkxi + • • • + Re Fkxn

= n(\\xi\\ + ■ ■ ■ + \\xn\\),       k = 1, • • •, m,

which is (23); and this, together with (a), gives (24).

Remark 6. As usual, analogues of Corollaries 1 and 2 follow easily.

Remark 7. Theorem 4 contains Theorem 2 as a special case. One

need only take B to be the Hilbert space 77 and the linear functional

Fk to be given by

Fkx = (x, ak)

for x in 77, where the ak are as in Theorem 2. From Bessel's inequality

| Fi*|2 4- • • • 4- | Fmx\2 =  | (x, ai) \2 + • • • + | (*, am) \2 ^ \\x\\2,

and hence c^l. Since it is already known that 1 ^c, it follows that

c — l. Even if B is a Hilbert space, but the ak's are not orthogonal, it

may happen that c>l (e.g., take w = 2 and ai=a2).
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