INCLUSION RELATIONS AMONG ORLICZ SPACES

ROBERT WELLAND1

This paper contains two results; the first extends to a wide class of Orlicz spaces the statement, due to Krasnosel'skii and Rutickii [1, p. 60], that L_1 is the union of the Orlicz spaces which it contains properly; the second shows that for a wide class of spaces this is not true, i.e. there exists a set of Orlicz spaces no one of which is the union of the Orlicz spaces it contains properly. Here the Orlicz spaces are defined on [0, 1] which is given Lebesgue measure μ .

1. We give in this section several definitions together with some elementary results about Orlicz spaces and convex functions.

Let \mathfrak{C} be the set of convex symmetric functions $\Phi \colon (-\infty, \infty) \to [0, \infty)$ such that $\Phi(0) = 0$, $\lim_{s \to 0} \Phi(s)/s = 0$ and $\lim_{s \to \infty} \Phi(s) = \infty$. If Φ and Ω are two elements of \mathfrak{C} , we say $\Phi \leq \Omega$ if there exist constants c and c such that $\Phi(s) \leq \Omega(cs)$ for all $c \geq s$. We say $c \sim \Omega$ if $c \leq \Omega$ and $c \leq C$ we say $c \sim \Omega$ if $c \leq \Omega$ but $c \sim \Omega$. If $c \sim \Omega$ and $c \sim \Omega$ if $c \sim \Omega$ but $c \sim \Omega$ but $c \sim \Omega$ and $c \sim \Omega$ but $c \sim \Omega$ and $c \sim \Omega$ but $c \sim \Omega$ and $c \sim \Omega$ but $c \sim \Omega$ but c

If $\Phi \in \mathbb{C}$, then there exists a nondecreasing function $\phi: [0, \infty) \to [0, \infty)$ such that $\phi(0) = 0$, $\lim_{s \to \infty} \phi(s) = \infty$ and

$$\Phi(s) = \int_0^{|s|} \phi(t) dt$$

(see [1, p. 5]). This representation for Φ yields easily the two following inequalities:

(1)
$$\frac{s}{2} \phi\left(\frac{s}{2}\right) \leq \Phi(s) \leq \phi(s),$$

$$(2) 2\Phi(s) \leq \Phi(2s).$$

Let

$$L_{\Phi}^* = (f \in L_1: \Phi(cf) \in L_1 \text{ for some positive real number } c).$$

The set L_{Φ}^* is called an Orlicz space. It has a unique uniformity which is compatible with the order relation. Since this uniformity does not intervene in what follows, we do not give its definition; for this see [1, p. 69].

Received by the editors April 26, 1965.

¹ This research was supported by N.S.F. grant no. GP2491.

The order relations among the elements of \mathbb{C} give rise to order relations among the L_{Φ}^* as follows:

- (a) $\Phi \leq \Omega$ implies $L_{\Omega}^* \subset L_{\Phi}^*$.
- (b) $\Phi \sim \Omega$ implies $L_{\Omega}^* = L_{\Phi}^*$.
- (c) $\Phi < \Omega$ implies $L_{\Omega}^* \subset L_{\Phi}^*$ but $L_{\Phi}^* \subset L_{\Omega}^*$.

Statements a and b are direct consequences of the definitions; while c is a special case of

(d) $\limsup_{s\to\infty} \Omega(\alpha s)/\Phi(s) = \infty$ for all $\alpha>0$ implies there exists $f\in L_{\Phi}$ such that $f\notin L_{\Omega}^*$.

PROOF. Let \overline{E}_{ij} be a pairwise disjoint double sequence of intervals in [0, 1] such that $\mu(\overline{E}_{ij}) \neq 0$, $i, j = 1, 2, \cdots$. For each pair of natural numbers (n, i) there exists a number $s_{ni} > 0$ such that $s > s_{ni}$ implies $\Phi(s)\mu(\overline{E}_{ni}) > 2^{-i}n^{-2}$. There exist numbers $c_{ni} > s_{ni}$ such that $\Omega(c_{ni})/n > n^2\Phi(c_{ni})$.

Let E_{ni} be a nonempty subinterval of \overline{E}_{ni} such that $\Phi(c_{ni})\mu(E_{ni}) = 2^{-i}n^{-2}$ and define

$$f(x) = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} c_{ij} X_{E_{ij}}(x).$$

It is easy to show that $f \in L_{\Phi}^*$ but $f \notin L_{\Omega}^*$.

- (e) One can use a, b and d to show that $\Phi < \Omega$ if L_{Ω}^* is a proper subset of L_{Φ}^* .
 - 2. We say that $\Phi \in \mathfrak{C}$ satisfies * if

$$\limsup_{s\to\infty}\frac{\Phi(2s)}{\Phi(s)}<\infty$$

and we say it satisfies ** if

**
$$\liminf_{s \to \infty} \frac{\Phi(2s)}{s\Phi(s)} > 0.$$

These conditions are similar to the Δ_2 and Δ_3 conditioned in [1]. A function Φ which satisfies * grows less rapidly than some power and in addition it grows regularly; while a function Φ which satisfies ** grows like exp. It follows that $\mathfrak C$ contains functions which satisfy neither * nor **.

THEOREM 1. Suppose $\Phi \in \mathbb{C}$ and Φ satisfies *; then, L_{Φ}^* is the union of the Orlicz spaces it contains properly.

PROOF. Let $f \in L_{\Phi}^*$. We will prove there exists Ω in \mathfrak{C} such that $\Phi < \Omega$ and such that $f \in L_{\Omega}^*$. If $f \in L_{\infty}$, we are finished because $L_{\infty} \subset L_{\Phi}^*$ properly. We will assume that $f(x) \ge 0$ a.e.; this is in order because

 $f \in L_{\Phi}^*$ iff $|f| \in L_{\Phi}^*$. Let c be a positive real number such that $\Phi(cf) \in L_1$. Define $\nu(s) = \mu((x : \Phi(cf(x)) \leq s))$ and recall that

$$\int_0^1 u(\Phi(cf)) d\mu = \int_0^\infty u(s) d\nu(s)$$

whenever u is integrable with respect to $d\nu$. The $sd\nu(s)$ measure of $[0, \infty)$ is finite (let u(s) = s) so there exists a function ω : $[0, \infty) \rightarrow [0, \infty)$ such that

(a') $\int_0^\infty s\omega(s)d\nu(s) < \infty$,

(b') ω is nondecreasing,

(c') $\omega(0) = 0$ and $\lim_{s \to \infty} \omega(s) = \infty$.

The function

$$\Omega_0(s) = \int_0^{|s|} \omega(|s|) ds$$

is an element of \mathfrak{C} and so is $\Omega(s) = \Omega_0(\Phi(s))$ [1, p. 10]. The inequality 1 of §1 gives

$$\int_0^1 \Omega(cf) \ d\mu = \int_0^\infty \Omega_0(s) \ d\nu(s) \le \int_0^\infty s\omega(s) \ ds < \infty$$

from which it follows that $f \in L_0^*$. To complete the proof, we must show $\Omega > \Phi$. Using inequality 1 again we get

(3)
$$\Omega(s) = \Omega_0(\Phi(s)) \ge \left[\Phi(s)/2\right]\omega(\Phi(s)/2);$$

together with 2 this gives $\Omega(2s) \ge \Phi(s)$ whenever $s \ge s_0$. Here s_0 is any positive number such that $\omega(\Phi(s_0)/2) \ge 1$. This shows that $\Omega \ge \Phi$.

Let α be any positive number. There exist positive numbers s_0 and $M(\alpha)$ such that $\Phi(\alpha s) \geq M(\alpha)\Phi(s)$ if $s \geq s_0$; this is true because Φ satisfies *. Now this with 3 gives $\Omega(\alpha s) \geq M(\alpha)\Phi(s)\omega(\Phi(\alpha s)/2)/2$ for $s \geq s_0$ and this in turn gives

$$\limsup_{s\to\infty}\frac{\Omega(\alpha s)}{\Phi(s)}=\limsup_{s\to\infty}\frac{M(\alpha)\omega(\Phi(\alpha s)/2)}{2}=\infty.$$

Because α was arbitrary, we have that $\Omega \leq \Phi$.

LEMMA. Suppose Ω and Φ are two elements of $\mathbb C$ such that for some $\alpha > 1$

$$\limsup_{s\to\infty}\frac{\Omega(s)}{\Phi(\alpha s)}\geq 1.$$

Then, if t_0 is any positive number there exists $t \ge t_0$ such that $\Omega(s) \ge \Phi(s)$ for all $s \in [t, \alpha t]$.

PROOF. Let t_0 be any positive number and let $t \ge t_0$ be any number such that $\Omega(t) \ge \Phi(\alpha t)$. Let l' be a straight line through $(t, \Omega(t))$ which lies beneath the graph of Ω ; such a line exists because Ω is convex (l') is not necessarily unique). Let l be the straight line, parallel to l' which passes through $(t, \Phi(\alpha t))$. Let u, v be the two numbers such that u < v and l passes through the points $(u, \Phi(u))$, $(v, \Phi(v))$. By comparing similar triangles we get

$$\frac{\Phi(v) - \Phi(u)}{v - u} = \frac{\Phi(\alpha t) - \Phi(u)}{t - u}.$$

This leads directly to the inequality $v > \alpha t$. For $s \in [t, \alpha t]$, $(s, \Phi(s))$ is beneath the line t while $(s, \Omega(s))$ is above the line t'. Hence $\Phi(s) \leq \Omega(s)$ for $s \in [t, \alpha t]$.

THEOREM 2. Suppose $\Phi \in \mathbb{C}$ and satisfies **; then L_{Φ}^* is not the union of the Orlicz spaces it contains properly.

PROOF. The condition ** implies there exists $\alpha > 0$ and s_0 such that $s \ge s_0$ implies $\Phi(2s) > s\alpha\Phi(s)$. Let $c_n = 2^n s_0$. Let (E_n) be a sequence of pairwise disjoint subintervals of [0, 1] such that $\Phi(c_n)\mu(E_n) = 2^{-n}$. This is possible because

$$\Phi(c_n) \ge 2^{n(n-1)/2} s_0^{n-1} \alpha^n \Phi(s_0).$$

If we set

$$f(x) = \sum_{n=1}^{\infty} c_n X_{E_n}(x)$$

then $\Phi(f) \in L_1$ while $\Phi(2f) \notin L_1$; in fact

$$\int_{E_n} \Phi(2f) \ d\mu \geq 2^n s_0 \alpha \Phi(c_n) \mu(E_n) = \alpha s_0.$$

Suppose L_{Ω}^* is a proper subset of L_{Φ}^* . This is the case only if $\Phi < \Omega$. Let k be any number in (0, 1); we will show that $\Omega(kf) \oplus L_1$ and hence that $f \oplus L_{\Omega}$. The assertion $\Omega > \Phi$ implies that

$$\limsup_{s\to\infty}\frac{\Omega(ks)}{\Phi(2s)}=\infty.$$

Let $t_0 = c_1$ and apply the lemma to find t_1 such that $s \in [t_1, 2t_1]$ implies $\Omega(ks) \ge \Phi(2s)$. Having chosen t_{n-1} choose $t_n > 2t_{n-1}$ such that $s \in [t_n, t_{2n}]$ implies $\Omega(ks) \ge \Phi(2s)$. By induction this yields an infinite sequence of intervals $[t_n, 2t_n]$ each of which contains one of the numbers c_{m_n} .

The proof is completed by observing that

$$\int_0^1 \Omega(kf) \ d\mu \ge \sum \Phi(2c_{m_n})\mu(E_{m_n}) \ge \sum_{n=1}^\infty \alpha s_0.$$

REFERENCE

1. Krasnosel'skii and Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.

Northwestern University

ON A COMBINATORIAL PROBLEM OF ERDÖS

D. KLEITMAN

Let C(n, m) denote the binomial coefficient n!/(m!n-m!). Let S be a set containing N elements and let X be a collection of subsets of S with the property that if A, B and C are distinct elements of X, then $A \cup B \neq C$. Erdös [1], [2], has conjectured that X contains at most KC(N, [N/2]) elements where K is a constant independent of X and N. The problem is related to a result of Sperner [3] to the effect that if the collection X has the more restrictive property that no element of X contains any other, then X can have at most C(N, [N/2]) elements.

We show below that Erdös' conjecture for $K=2^{3/2}$ can be deduced directly from Sperner's result.

Let L_N be defined by

$$L_N \equiv 2^{\lfloor N/2 \rfloor} C(N - \lfloor N/2 \rfloor, \left[\frac{1}{2} (N - \lfloor N/2 \rfloor) \right]) + 2^{N - \lfloor N/2 \rfloor} C(\lfloor N/2 \rfloor, \lfloor N/4 \rfloor).$$

An easy calculation shows that L_N is always less than $2^{3/2}C(N, [N/2])$ to which it is asymptotic for large N. We prove:

THEOREM. If X is a family of subsets of an N element set S such that no three distinct A, B, C in X satisfy $A \cup B = C$, then X has less than L_N elements.

PROOF. For any finite set T and family X of subsets of T define

$$m_T(X) \equiv \{ A \in X \mid B \in X \text{ and } B \subset A \text{ imply } B = A \}.$$

Received by the editors March 9, 1965.