INCLUSION RELATIONS AMONG ORLICZ SPACES
ROBERT WELLAND!

This paper contains two results; the first extends to a wide class of
Orlicz spaces the statement, due to Krasnosel’skii and Rutickii [1,
p. 60}, that L, is the union of the Orlicz spaces which it contains prop-
erly; the second shows that for a wide class of spaces this is not true,
i.e. there exists a set of Orlicz spaces no one of which is the union of
the Orlicz spaces it contains properly. Here the Orlicz spaces are de-
fined on [0, 1] which is given Lebesgue measure .

1. Wegive in this section several definitions together with some ele-
mentary results about Orlicz spaces and convex functions.

Let € be the set of convex symmetric functions ®$: (— o, «)
—[0, ©) such that ®(0) =0, lim,., ®(s)/s=0 and lim, ., ®(s) = ». If
® and Q are two elements of @, we say ® <Q if there exist constants ¢
and so such that ®(s) <Q(cs) for all s=s,. We say d~Q if <Q and
Q=P; we say P<Qif <Q but Q£®. If &;~P; and &, =D ($1 <)
then @2 §92 (‘I)z <Qg)

If #E€e, then there exists a nondecreasing function ¢: [0, «)
—[0, ) such that ¢(0) =0, lim,., ¢(s) = © and

®(s) = |.Iqb(t) dat

0

(see [1, p. 5]). This representation for & yields easily the two follow-
ing inequalities:

1) - ¢(—;—) < a(s) S 6(6),
2) 28(s) < $(2s).
Let

Ly = (f € Ly: ®(c¢f) € L, for some positive real number c).

The set L is called an Orlicz space. It has a unique uniformity which
is compatible with the order relation. Since this uniformity does not
intervene in what follows, we do not give its definition; for this see
[1, p. 69].
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The order relations among the elements of € give rise to order
relations among the L} as follows:

(a) ®<Q implies L§ CL3.

(b) ®~Q implies Ly =L3.

(c) ®<Q implies L§ CL§ but Ly L.

Statements @ and b are direct consequences of the definitions; while
¢ is a special case of

(d) lim sup,., Q(as)/®(s)= o for all a>0 implies there exists
fE Ly such that fe L.

Proor. Let E;; be a pairwise disjoint double sequence of intervals
in [0, 1] such that u(E:;) #0,4,j=1, 2, - - - . For each pair of natural
numbers (n, 1) there exists a number s,;>0 such that s>s,; implies
®(s)u(En:) >2-n2 There exist numbers ¢,;>s,; such that Q(c.:)/n
> n7<I>(c,.,~) .

Let E,; be a nonempty subinterval of E,; such that ®(c.;)u(E.)
=2"'»~? and define

0 0

f@) = 22 22 ciiX ().

J=1 i=1
It is easy to show that fE L} but fEE LS.
(e) One can use a, b and d to show that ® <Qif L§ is a proper sub-

set of L.
2. We say that € € satisfies * if

. &(25)
* lim sup
s—© ‘13(8)

and we say it satisfies ** if

*k lim inf

These conditions are similar to the A; and A; conditioned in [1]. A
function ® which satisfies * grows less rapidly than some power and
in addition it grows regularly; while a function ® which satisfies **
grows like exp. It follows that € contains functions which satisfy
neither * nor **.

THEOREM 1. Suppose $E C and ® satisfies *; then, Ly is the union of
the Orlics spaces it contains properly.

Proor. Let fEL%. We will prove there exists Q@ in @ such that
& <Q and such that fELE. If fE L., we are finished because L,CLg
properly. We will assume that f(x) 20 a.e.; this is in order because
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fELY iff |f| EL§. Let ¢ be a positive real number such that ®(cf)
€ L. Define »(s) =u((x: ®(cf(x)) =s)) and recall that '

[ wtetep) an = f "u(s) dv(s)

whenever « is integrable with respect to dv. The sdv(s) measure of
[0, ) is finite (let u(s)=s) so there exists a function w: [0, =)
—[0, ) such that

(@) J5sw(s)dr(s) < e,

(b’) w is nondecreasing,

(c!) w(0)=0 and lim,., w(s) = .

The function

lal
Qo(s)=j; w(lsl)ds

is an element of € and so is Q(s) =Q(®(s)) [1, p. 10]. The inequality
1 of §1 gives

folﬂ(cf) dp = Lmﬂo(s) dv(s) < j;wsw(s) ds < o

from which it follows that fELS. To complete the proof, we must
show @>®. Using inequality 1 again we get

®3) Qs) = Q(B(s)) = [#(s)/2]w(®(5)/2);

together with 2 this gives Q(2s) 2®(s) whenever s=s,. Here s, is any
positive number such that w(®(se)/2) =1. This shows that 2=&.

Let @ be any positive number. There exist positive numbers s
and M(a) such that ®(as) = M(a)P(s) if s=s,; this is true because ®
satisfies *. Now this with 3 gives Q(as) = M(a)®(s)w(@(as)/2)/2 for
s=so and this in turn gives

oo 209 L M(@u(@(es)/2)
m sup ® = lim suyp ————— = ®

82— S 8— 2
Because o was arbitrary, we have that Q £&.
LEMMA. Suppose Q and ® are two elements of C such that for some > 1

. Q(s)
lim sup
s—o P (aS)

=1

Then, if ty is any positive number there exists t =1, such that Q(s) ZP(s)
for all s€[t, at].
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Proor. Let ¢, be any positive number and let ¢ = ¢, be any number
such that Q(¢) =2®(at). Let I’ be a straight line through (¢, Q(¢)) which
lies beneath the graph of ©; such a line exists because Q is convex (I
is not necessarily unique). Let / be the straight line, parallel to
which passes through (¢, ®(at)). Let u, v be the two numbers such
that u <v and [ passes through the points (%, ®(%)), (v, #(v)). By com-
paring similar triangles we get

B() — B(w) _ B(at) — B(w)

v — U t—u

This leads directly to the inequality v>at. For s€ [t, at], (s, ®(s)) is
beneath the line ¢ while (s, Q(s)) is above the line 7. Hence ®(s) < Q(s)
for s€[¢, ot].

THEOREM 2. Suppose ®E @ and satisfies **; then L} is not the union
of the Orlicz spaces it contains properly.

ProOF. The condition ** implies there exists @ >0 and s, such that
s=s, implies ®(2s) > sa®(s). Let c.=2"so,. Let (E,) be a sequence of
pairwise disjoint subintervals of [0, 1] such that ®(c.)u(E.)=2"".
This is possible because

n(n—=1)/2 n—1 n

®(c,) = 2 so  a B(so).

If we set

@) = 3 eaX 5, (2)

ne=1

then ®(f) €L, while ®(2f) & L,; in fact

f ®(2f) du = 27s0a®(ca)u(En) = aso.

n

Suppose L§ is a proper subset of Lg. This is the case only if ® <Q. Let
k be any number in (0, 1) ; we will show that Q(kf) & L, and hence that
f& Lqo. The assertion >® implies that

. Q(ks)
lim sup = ®
s ® ‘I)(ZS)

Let ¢, =¢; and apply the lemma to find ¢ such that s€& [#, 2] implies
Q(ks) =®(25). Having chosen ¢,_; choose ¢, > 2¢,_1 such that sE€ [ta, f2.]
implies Q(ks) =®(2s). By induction this yields an infinite sequence of
intervals [t,, 2¢,] each of which contains one of the numbers ¢,.
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The proof is completed by observing that

f QEf) du = Y ®(2¢m)1(Em,) = iaso.

n=l
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ON A COMBINATORIAL PROBLEM OF ERDOS
D. KLEITMAN

Let C(n, m) denote the binomial coefficient n!/(m!n—m!). Let
S be a set containing N elements and let X be a collection of subsets
of S with the property that if 4, B and C are distinct elements of X,
then AAUB#=C. Erdos [1], [2], has conjectured that X contains at
most KC(N, [N/2]) elements where K is a constant independent of
X and N. The problem is related to a result of Sperner [3] to the effect
that if the collection X has the more restrictive property that no ele-
ment of X contains any other, then X can have at most C(N, [N/2])
elements.

We show below that Erdés’ conjecture for K =23/2 can be deduced
directly from Sperner’s result.

Let Ly be defined by

Ly = 2WmC(N — [N/2], BW — [N/2D)])
+ 2¥-winC([N/2], [N/4)).

An easy calculation shows that Ly is always less than 23/2C(N,[N/2])
to which it is asymptotic for large N. We prove:

THEOREM. If X is a family of subsets of an N element set S such that
no three distinct A, B, C in X satisfy A\UB=C, then X has less than
Ly elements.

ProoF. For any finite set T and family X of subsets of T define
mr(X) ={AE X|BE X and BC 4 imply B = 4}.
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