ON PURE STATES OF C*-ALGEBRAS

SHÔICHIRÔ SAKAI1

In the present note, we are concerned with the following problem (cf. [1, p. 58, problème]).

Let A be a C^* -algebra with unit 1, B a C^* -subalgebra of A containing 1, $\kappa(>0)$ a positive element of A. Then, does there exist a state f on A such that $f(\kappa)>0$ and f is a pure state on B?

We shall show that the answer for this problem is, in general, negative and give a sufficient condition in order that it is affirmative.

First of all we show

THEOREM 1. Let A be a C*-algebra, B a C*-subalgebra of A, κ a positive element of A. Suppose that $f(\kappa) = 0$ for all states f of A such that f is pure on B, then the C*-subalgebra C generated by B and κ can be expressed as follows:

 $C = B + \Pi$, where Π is a closed self-adjoint, two-sided ideal of C, $B \cap \Pi = (0)$ and $\kappa \in \Pi$.

PROOF. Let T be the set of all states f of A such that f is pure on B and put $Q = \{y | f(y) = 0 \text{ for } y \in A \text{ and } f \in T\}$. Then for $b \in B$ and $y \in Q$, $f(b^*yb) = 0$, because a state $g/f(b^*b)$ $(g(a) = f(b^*ab))$ is also pure on B if $f(b^*b) \neq 0$. Therefore $f(b^*\kappa b) = 0$ for all $b \in B$ and all $f \in T$.

Let Π be a C^* -subalgebra generated by $\{\kappa, b^*\kappa c | b, c \in B\}$, then $|f(b_1^*\kappa c_1b_2^*\kappa c_2 \cdot \cdot \cdot b_n^*\kappa c_n)| \le f(b_1^*\kappa b_1)^{1/2}f(d)^{1/2} = 0$, where d is some element of A.

Hence we can easily conclude $f(\Pi) = 0$ for all $f \in T$; clearly $B\Pi \subset \Pi$ and $\Pi B \subset \Pi$, so that Π is an ideal of the C^* -algebra $B + \Pi$.

For $y \in B \cap \Pi$, $y^*y \in B \cap \Pi$ and so $f(y^*y) = 0$ for all $f \in T$; hence $y^*y = y = 0$. This completes the proof.

Now we shall show a sufficient condition.

COROLLARY. Let A be a C*-algebra, B a C*-subalgebra of A, κ a positive element of A. Suppose that there is an element b in B such that $||b-\kappa|| < ||b||$, then there is a state f of A such that $f(\kappa) > 0$ and f is pure on B.

PROOF. Suppose that the statement is not true, then by Theorem 1 there is a closed ideal II such that $B \cap II = (0)$ and $\kappa \in II$. The mapping $B \rightarrow B + II/II$ is isometric; hence $||y + \kappa|| \ge ||y||$ for all $y \in B$, a contradiction. This completes the proof.

Received by the editors January 26, 1965.

¹ This research was partially supported by ONR Nonr-551(517).

Finally we shall show a negative example.

A negative example: Let \mathfrak{F} be a separable Hilbert space, \mathbf{C} the C^* -algebra of all compact operators on \mathfrak{F} , M a non-type I factor on \mathfrak{F} , then clearly $M \cap \mathbf{C} = (0)$.

Consider a C^* -subalgebra D = M + C in the C^* -algebra $B(\mathfrak{H})$ of all bounded operators on \mathfrak{H} , then C is an ideal of D.

Let ϕ be a pure state of D such that it is also pure on M then we shall consider the *-representation $\{\pi\phi, \, \mathcal{S}\phi\}$ on a Hilbert space $\mathcal{S}\phi$ of D constructed via ϕ .

If $\pi\phi(C)1\phi\neq0$, where 1ϕ is the image of the unit 1 in $\mathcal{S}\phi$, the closure of $\pi\phi(C)1\phi=\mathcal{S}\phi$, for $\{\pi\phi, \mathcal{S}\phi\}$ is irreducible and so $\mathcal{S}\phi$ is separable, because C is uniformly separable.

Moreover the *-representation $\{\pi\tilde{\phi}, \mathfrak{F}\tilde{\phi}\}\$ on a Hilbert space $\mathfrak{F}\tilde{\phi}$ of M constructed via the restriction $\tilde{\phi}$ of ϕ on M is also irreducible and clearly dim $\mathfrak{F}\tilde{\phi} = \dim \{\text{the closure of } \pi\phi(M)1\phi\}$; hence dim $\mathfrak{F}\tilde{\phi} \leq \aleph_0$, so that $\{\pi\tilde{\phi}, \mathfrak{F}\tilde{\phi}\}$ is an irreducible *-representation on the separable Hilbert space $\mathfrak{F}\tilde{\phi}$.

On the other hand, the separable *-representation of M is always normal (cf. [2], [3]); hence $\{\pi\tilde{\phi}, \, \S\tilde{\phi}\}$ is normal, so that the von Neumann algebra $\{\pi\tilde{\phi}(a) \, | \, a \in M\}$ on $\S\tilde{\phi}$ is not of type I, a contradiction.

Therefore $\pi \phi(\mathbf{C}) \mathbf{1} \phi = 0$ and so $\phi(\mathbf{C}) = 0$.

Now let f be a state of D such that it is pure on M, $\mathfrak{F}_f = \{g | f = g \text{ on } M; g \text{ states of } D\}$.

Then \mathcal{F}_f is a convex compact subset of the state space of D. Let ψ be an arbitrary extreme point in \mathcal{F}_f , then it is also extreme in the state space of D; hence by the above consideration, $\psi(C) = 0$ and so f(C) = 0. This shows that the problem is negative.

REFERENCES

- 1. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- 2. J. M. G. Fell and J. Feldman, Separable representation of rings of operators, Ann. of Math. 65 (1957), 241-249.
- 3. M. Takesaki, On the nonseparability of singular representations of operator algebras, Kōdai Math Sem. Rep. 12 (1960), 102-108.

University of Pennsylvania