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1. Introduction. The terms locally convex algebra, locally w-convex

algebra, and Q-algebra are defined in [5]. Various cross-norms on the

tensor product of Banach spaces are defined in [6]. The inductive and

projective tensor products of locally convex spaces are defined in [4].

Gelbaum [l], [2] and Tomiyama [8] have remarked that the tensor

product of two Banach algebras completed with respect to the great-

est cross-norm is again a Banach algebra. When a Banach algebra is

obtained by completing the tensor product of two commutative

Banach algebras with respect to a cross-norm, these authors have

given sufficient conditions under which its space of nonzero multi-

plicative functionals with relative weak* topology can be character-

ized as the topological direct product of the corresponding spaces

associated with the two factors. Gil de Lamadrid [3] has announced

the extension of this result to the noncommutative case. In [7],

various necessary and sufficient conditions are given for the charac-

terization of Gelbaum and Tomiyama to hold.

Lemmas 1 and 2 of this paper show that if a locally convex algebra

is the completion, in a topology not stronger than the inductive

topology, of the tensor product of two locally convex algebras, then

there is a canonical continuous one-to-one mapping of its space of

nonzero continuous multiplicative linear functionals, with the weak

topology induced by the algebra, into the topological direct product

of the corresponding spaces associated with the two factors. If this

mapping is open, it provides a characterization of the space of non-

zero continuous multiplicative functionals associated with the com-

pleted tensor product algebra. Theorem 1 shows that if the completed

tensor product is a locally w-convex Q-algebra, then the mapping is

open. Since every Banach algebra is a locally w-convex Q-algebra,

this theorem generalizes the discussion of such characterizations given

in [1], [3], [7], [8].
Theorem 2 shows the complete projective tensor product of locally

w-convex algebras to be locally w-convex, while Theorem 3 states

that if the two algebras are also complete commutative Q-algebras

then the complete projective tensor product inherits these properties.

Since the complete projective tensor product of locally convex spaces

corresponds to the completion of the tensor product of Banach spaces
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with the greatest cross-norm, Theorems 2 and 3 are analogous to the

result that such a product of Banach algebras is again one.

Theorem 4 gives a necessary and sufficient condition for semi-

simplicity of the complete projective tensor product of semisimple

complete commutative locally rai-convex (J-algebras. It generalizes a

result for Banach algebras given in [7].

It is of interest to note that the arguments used to obtain Theorems

1 and 3 are quite different from those employed to obtain the cor-

responding results for Banach algebras. In particular the assumption

of commutativity plays an essential role in the proof of Theorem 3,

and the problem of extending the theorem to the noncommutative

case remains open, while the analogous result for Banach algebras

does not depend on commutativity. Theorem 3 provides a method for

constructing new complete commutative locally ?ra-convex Q-algebras

from old ones. An example is given at the end of the paper.

2. Notation and remarks. We follow the notation and terminology

of [5] for spectrum, S^(x), and spectral radius, <r^(x), of an element

x in the algebra A. If A is a locally convex space, A' is the dual with

the weak A topology. If A is also an algebra, MiA) is the set of non-

zero multiplicative functionals in A' with the relative topology.

Remark 1. A locally convex algebra A is a Q-algebra iff oa(x) is

continuous at zero.

Proof. Elementary from Proposition 13.5 of [5].

Remark 2. If A is a complete locally raz-convex algebra, then

*a(x) fcsnp{|/(*)| :fEMiA)}

Proof. If A is commutative the equality holds (Corollary 5.6 of

[5]). Every commutative subalgebra of a complete locally raz-convex

algebra A is contained in a maximal commutative subalgebra B,

which is closed and hence complete. If xEB, then obviously 2a(#)

= 2B(x) and hence o\i(x) =o\b(x). But MiA) C-M(P) in the sense that

the restriction of an element of 717(^4) is in MiB); hence the inequal-

ity.

Remark 3. A complete commutative locally »w-convex algebra, A,

is semisimple iff A' is the closed linear hull of MiA).

Proof. A is semisimple iff mid) =0 for all mEMiA) implies o = 0

(Corollary 5.5 of [5]). Suppose A' is the closed linear hull of MiA).

For any nonzero aEA there is/ in A' such that/(c) =^0. For all «>0,

there is a linear combination g of elements of MiA) such that

I g(a) —f(o)| <e so not all members of MiA) can vanish at a. Hence

A is semi-simple. Conversely if A is semisimple the closed linear hull

of MiA) is the orthogonal complement in A' of some closed subspace
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of A. The closed subspace of A is zero by the cited corollary, so its

orthogonal complement is A'.

3. Tensor products of locally convex algebras.

Lemma 1. Let A3be a locally convex algebra which is the completion of

the tensor product, Ai®A2, of two locally convex algebras in a topology

not stronger than the inductive topology. Then each m3£.M(A3) is a

continuous extension of mi®m2 where miGM(Ai) and m2(E.M(A2).

Conversely, every such mi®m2 which has a continuous extension to A3

is in M(A3).

Proof. The last assertion is immediate, for mi®m2 is multiplica-

tive on Ai®A2 and since multiplication is (separately) continuous

in the completion, A3, a continuous extension must also be multi-

plicative. Suppose m3 is a continuous nonzero multiplicative func-

tional on A3. Since m3 cannot vanish identically on Ai®A2, there is

ai®a2 with m3(ai®a2) not zero, and m3(a\®a%) = [m3(ai®a2)]3y^0.

Letting rm be defined by

3 3 3 3
mi(bi) = m3(biai ® a2)/m3(ai ® a2),

m2(b2) = m3(ax ® b2a2)/m3(ai ® a2)

where a,-, &,-, c^Aj, i = l, 2; we have

m^biCi) = m3(biCiax ® a2)/m3(ax ® a2)

m3(bi ® a2)m3(ai ® a2)m3(ci ® a2)m3(ai ® a,)

m3(a\ ® al)m3(al ® a32)

m3(biai ® a,)m3(ciai ® a2)

m3(a\ ® al)m3(a\ ® al)

= mi(bi)mi(ci).

By a similar calculation m2 is multiplicative. Suppose m3(di®d2) 5^0.

Then an easy computation, using similar manipulations, yields

33 33 33 33
m3(biai ® a2)/m3(ai ® a2) = m3(bidi ® d2)/m3(di ® d2)

so mi is well defined. A corresponding identity shows m2 to be well

defined also. Now, by definition, mi®m2(bi®b2) = mi(bi)m2(b2). By

the preceding remark we can choose fli in the definition of mi and m2

to be bi unless m3(bi®a2) =0 for all a2(EA2. But in that case,
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miibi) = m3ibi ® a2)raz3(ai ® a2)/m3iai ® a2) = 0

so

m^ibi ® b2) = 0 = miibi)m2ib2) = mx ® m2if>i ® b2).

Otherwise, choosing ai = 6i, we get

mzibi ® o2)  msih ® b2a2)
mi ® m2ibi ® b2) = ———— -—-— = Ws(&i ® b2).

ms{b\ ® a\)    mtib\ ® ai)

By linearity and continuity of m3 we have m3 a continuous extension

of mi®m2. By hypothesis, the topology of A3 is not stronger than the

inductive topology on ^4i®^42- By definition of the inductive topol-

ogy, m3ibi®b2) is separately continuous in bi and b2, which is to say

that the rati and m2 defined above are continuous on Ai and A2.

Lemma 2. Under the assumptions of Lemma 1 the mappings from

MiA3) to M(.4i) and MiA2) defined in the proof of Lemma 1, are con-

tinuous.

Proof. We prove only that the mapping from MiA3) to MiAi) is

continuous. In the proof of Lemma 1, mi was defined as a function of

m3 by an equation equivalent to

miibi) = m3ibi ® a2)m3iai ® a2)/m3iai ® a2).

This can be written dually as

biimi) = [bi ® a2im3)][ai ® a2im3)]/[ai ® a2im3)].

By definition of the weak topology, elementary theorems on con-

tinuity of combinations of complex valued functions and the fact

that for each m% we can choose ai®a2 so that, on a neighborhood of

m3, m3iai®a2) is bounded from zero, we have the composite function

biimiim3)) continuous in m3 for each bi in Ai. The topology of M(.4i)

is precisely the weak topology induced by the family of functions

biimi). The inverse images of open sets of complex numbers under

these functions form a subbase for this topology. By continuity of the

composite function, the inverse images of this subbase in MiA3) must

be open. Thus the mapping from ML43) to MiAi) is continuous.

Theorem 1. Let A3be a locally m-convex Q-algebra which is the com-

pletion, in a topology not stronger than the inductive topology, of the

tensor product ^4i®^42 of two locally convex algebras. Then MiA3) is

canonically homeomorphic to the subset of MiAi)XMiA2) consisting of

elements (wi, m2) such that mi®m2 has a continuous extension to A3.
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Proof. Lemmas 1 and 2 give the existence of a canonical one-to-one

continuous map of M(A3) onto the designated subset of M(Ai)

XM(A2) with the relative product topology, so we need only show

the continuity of the inverse. This inverse mapping carries (mi, m2)

to m3, the continuous extension of mi®m2. Every neighborhood of

m3 in M(A3) contains an open set of the form

V = {m3 : | m{ (xf) - m3(xA \   < e,   j = I, 2, ■ ■ • , k)

where x, are members of A3. Since A3 is a <2-algebra, by Remark 1 we

have cta,(x) continuous at zero, so the set

Uj = {y-o-A&j - y) < e/4}

is a neighborhood of Xj. Since A i ® A 2 is dense in A 3, there is y^G A i ® A 2

in Uj such that w3(y,)^0. By Remark 2 and the fact that A3 is

complete and locally w-convex, we have

(*)     I »«' (xj) - mi (yj) \  =  \mi (Xj - yy) |   ^ t,At'xt - y,) < e/4

for all mi in M(A3).

Let

Vi = X) an ® °U-
t'-l

Then

I mi (ys) - m3(yj) \

-    S m{ (aij)(m, (ba) — m2(bij)) + (ml (an) — mi(aij))m2(bi,)  .
i-l

Let M = maxj,y{ |wi(ai,)|, \m2(bij)\ ), w = max,{Wy}. Then if

I mi(ai,) — mi(aij) \   < min <——■, M>
\<±nM        )

and

i i e

I mi (ba) - m2(bij) \   < —— >
8nM

we have

I mi (yj) - m3(yj) \   < — ■

Using the inequality (*) satisfied in choosing yj, we conclude that

\mi(xj)—m3(xj)\ <e. Now let (m{, mi) be in the neighborhood of



1966] TENSOR PRODUCTS OF LOCALLY CONVEX ALGEBRAS 129

(j»i, m2) defined in the prescribed subset of M(Ai)XMiA2) by

I rn[ ian) — tuiipa) \   < min <-, M>
WraAf       )

and

i i *
| mi ibif) - miibi,) \   < ——

8nM

for *=1, 2, • • • , nj,j=l, 2, ■ ■ ■ , k. By assumption, m{ ®m2 has a

continuous extension ml and nii®m2 has the continuous extension m3.

The preceding calculation shows that m3 lies in the open set V. The

continuity of the inverse mapping has thus been shown.

4. Tensor products of locally ?ra-convex algebras.

Theorem 2. The icomplete) projective tensor product of two locally

m-convex algebras is again locally m-convex.

Proof. An algebra is locally raz-convex iff its topology is defined by

a family of seminorms which are submultiplicative, i.e. which satisfy

the multiplicative inequality for Banach algebra norms. Choosing

such a family in each factor, repetition of the argument of Lemma 2

in [9] shows that the corresponding family of seminorms generating

the topology of the projective tensor product (constructed in Proposi-

tion 2 of [4]) will also be submultiplicative. The completion is clearly

also locally »ra-convex.

Corollary 1. If A% is the complete projective tensor product of two

locally m-convex algebras Ai and A2 and if A3 is also a Q-algebra, then

MiA%) is canonically homeomorphic to MiAi)XMiA2).

Proof. Theorems 1 and 2 and §1, no. 2 of [4].

Theorem 3. If Ai and A2 are complete commutative locally m-convex

Q-algebras, then their complete projective tensor product is also such an

algebra.

Proof. Let A3 be the complete projective tensor product. In view

of Theorem 2 and Remark 1, it suffices to show that <ta, is continuous

at zero. By Lemma 1 and Corollary 5.6 of [5], we have

(TAsix) = sup I mi ® m2(x) \

= sup sup I miil ® w2(x)) I

= sup 0^,(1 ® m2i%))
m,
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where 1 is the identity map on Ai and we have written the tensor prod-

ucts of operators to denote its extension, which always exists by §1,

no. 2 of [4]. Since Ai is a <2-algebra, ou, is continuous at zero. There

is a seminorm ui, in the family defining the topology of Ai such that

o~ax<ui. Thus

<tai(x) ^ supMi(l ® m2(x)).

Consider x in Ai®A2, then

k

x = 2 Xu ® x2i
i—l

and
k

sup mi(1 ® m2(x)) ^ sup  X) Mi(xi,) I m2(x2i) \
m, m2      i_i

^ X Mi(*i«) sup I m2(x2i) I
,=i m»

^   2 Ml(*l»)<M,(*2»).
i-1

Again ^42 is a Q-algebra and so there is u2 such that <7a,<M2 and

sup/n(l ® m2(x)) ^ 2 Mi(*ii)M2(*2i)-
m, ,_1

Varying the representation of x and taking the infimum of the right

side of this inequality, we obtain by Proposition 2 of [4] a seminorm,

7 of the family defining the projective topology on Ai®A2. For x in

the dense subset Ai®A2 we have

Mi(l ® m,(x)) g y(x).

Since m is continuous on Ai while 1 ®m2 and 7 are continuous on A3,

this inequality holds for all x. Thus we have

<ta3(x) ^ y(x)

for 7 a seminorm in the family defining the topology of A3, and aAl

is continuous at zero.

Corollary 2. 7/ ^4i awrf A 2 are complete commutative locally m-

convex Q-algebras and A3is their complete projective tensor product, then

M(A3) is canonically homeomorphic to M(Ai)XM(A2).

Theorem 4. Let Ai and A2 be semisimple complete commutative
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locally m-convex Q-algebras, and As their complete projective tensor

product. A3 is semisimple iff the extension to A3 of A{ ®A2  is dense

in A3.

Proof. By Remark 3, A3 is semisimple iff the closed linear hull

of MiA3) is A3. Let/ be an element of Ai. If A3 is semisimple there

is, for every e>0 and every finite set {x,} of elements of A3, a finite

combination of elements of MiA3) approximating/within e on the set

{x,}. By Corollary 2, each element of MiA3) is in the extension to

A3 of Ai ® Ai and this set is a linear space. Thus each neighborhood

of / in Ai contains a member of A{ ® Ai.

Conversely, suppose Ai is the closure of Ai ® Ai. For any xj^O

in A3, there is/in Ai such that/(x) 9^0. By hypothesis then, there are

fi'mAi and/2in^2' such that /i®/2(x) =/i(l®/2(x)) =/2(/i<g>l(x))^0.

Since Ai is semisimple, there is mi in MiAi) such that »*i(l ®/2(x))

= razi<g>/2(x)=/2(raii<g>l(x))^0. Since A2 is semisimple, there is then

m2 in MiA2) such that »z2(?rai®l(x)) =mi®m2ix)^0. Thus A3 is

semisimple.

As an application of these theorems, one might consider L}DiG) the

completion of the algebra of functions from a locally compact Abelian

group, G, to the indefinitely differentiable functions of compact sup-

port, D, with the usual topology, which are absolutely summable.

(See [4, p. 58] and [5, p. 13].) Grothendieck (in [4, §2, no. 2]) has

shown that as a space Pd(G) is topologically isomorphic with the

complete projective tensor product of D and LliG), the usual group

algebra. (The extension to algebra isomorphism is easily carried out,

as in [l].) From Theorem 3, we can conclude that L\)iG) is a locally

raj-convex ()-algebra. Further the multiplicative functionals are

homeomorphic to the direct product of the dual group of G with the

real line by Corollary 2.
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SQUARE ROOTS IN BANACH ALGEBRAS

L.TERRELL GARDNER

A complex number which is not a nonpositive real number has a

unique square root in the right half-plane. In this paper, we obtain

an extension of this observation to general (complex) Banach alge-

bras.

Since the elements we study are regular, and have logarithms, the

existence of square roots is not at stake. Even the existence of roots

having the desired spectral properties is evident. The uniqueness

result we suppose to be new. It subsumes a somewhat weakened ver-

sion of the classical result for positive, hermitian, bounded operators

on a Hilbert space (that such an operator has a unique positive

hermitian and bounded square root): our theorem would apply only

to the positive definite (regular) case.

Whether the results of this paper can be extended to the case of

not necessarily regular elements of a Banach algebra, we do not at

present know.

Definition. A subset A of the complex field will be called positive

if xG^4 implies x>0; A is weakly positive if xG^4 implies 9t(x)>0.

Let 2 denote the complement, in the complex plane, of the nonposi-

tive real numbers.

Theorem. Let 93 be a Banach algebra, and b an element of 93 with

spectrum Sp(&) contained in 2. Then there exists in SB a unique square

root ofb with weakly positive spectrum. IfSp(b) is real (hence positive),

so is Sp^1'2).

Proof. Existence: We assume first that 93 has an identity ele-
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