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the above mentioned theorem of Cartan and Caratheodory the proof

is finished.
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A CHARACTERIZATION OF TAME 2-SPHERES IN P3

C. A. PERSINGER1

In this note, the tame 2-spheres in P3 are characterized partly in

terms of homology and the arcs they contain. In a similar way, the

compact 2-manifolds with boundary are characterized. If K is a

finite topological 2-complex in P3 and v is a vertex of K, then St v

is the star of v, St v is the open star of v, and Lk » = St v — St v is

the link of v. The trivial 1-dimensional homology group of K will be

denoted by P7i(P)=0.
An w-manifold with boundary is a separable metric space such that

each point has a neighborhood whose closure is topologically equiv-

alent to a closed «-cell.

Theorem 1. Let K be a finite topological 2-complex in P3 such that

(i) K is connected,

(ii) Lk v is connected for each vertex v in K,

(iii) P7i(P)=0, and

(iv) K contains only tame arcs.

Then K is either a disk or a 2-sphere.

Proof. Since K contains no wild arcs and Lk v is connected, each

1-simplex in K lies on exactly one or two 2-simplices in K [2]. Since
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Lki) is connected, hkv = G, a connected graph. Again by (iv), no

vertex of G is of order greater than two, and so G is a 1-manifold

with boundary. Thus G is either an arc or a simple closed curve. So

St v is a 2-manifold with boundary, and hence K is a 2-manifold with

boundary. By (iii), K is either a disk or a 2-sphere.

Corollary 2. If K satisfies the conditions of the Theorem and if, in

addition, no arc in K separates K, then K is a 2-sphere.

By the addition of one more condition to Corollary 2, we obtain

a characterization of tame 2-spheres in E3.

Theorem 3. A necessary and sufficient condition that a finite con-

nected topological 2-complex K in E3 is a tame 2-sphere is that K satis-

fies the following conditions:

(i) Lk v is connected for each vertex v in K,

(ii) 77i(A:)=0,
(iii) K contains only tame arcs,

(iv) No arc in K separates K, and

(v) Ez — K is locally simply connected at each point of K.

Proof. By Corollary 2, A is a 2-sphere, and by Bing [l], condition

(v) insures that K is tame. Conversely, it is clear that a tame 2-sphere

satisfies the conditions.

If the requirement that 77i(A) =0 is omitted in Theorem 1, we ob-

tain the following corollary to the proof of Theorem 1.

Theorem 4. A finite topological 2-complex K in E3 is a compact 2-

manifold with boundary if and only if K satisfies the following condi-

tions :

(i) K is connected,

(ii) Lk v is connected for each vertex v in K, and,

(iii) K contains no wild arcs.
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