
NOTE ON AN IRRATIONAL POWER SERIES

H. DAVENPORT

1. In several recent notes [l], [2], [3], [4] Mordell has investi-

gated the series

*        aneiny)

(i) /(*) = E -—-f->
n_oo 1 — xe(raa)

where |x| <1 and a, y are real, and e(0) =e2,ri9. If Ela»l converges,

the series (1) obviously converges and has the alternative expression

00 oo

(2) fix) = zZ giva + y)x',    where    g{t) = zZ aneint).
F—0 —OO

Further, if a is irrational and x = reika), where k is an integer, it is

easily proved that

a-afii—ky)
(3) fix)-    asr^l    (0 < r < 1).

1 — r

The same proof shows that if x = reid), where 6 is not congruent

(mod 1) to an integral multiple of a, then/(x) =o((l — r)-1)-

Now suppose that in (1), and in any later sums over ra, the terms

ra and — ra are taken together. Then Mordell has shown that there is

another case, namely when

(1/ra   if ra ̂  0,
(4) On =   <

\ 0      if ra = 0,

in which the series (1) converges and equals (2), and in which the

limit relation (3) holds. In this particular case, as is well known,

(5) git) = - 2riit - [t] - |)

when t is not an integer. It is also well known that in this particular

case the partial sums zZ-if aneint) of the series for git) are uniformly

bounded.

The object of the present note is to give a simple and direct proof

of these results, in a slightly more general form:

Theorem. Suppose that an—>0 as n—>+ oo, that zZ-*> a» converges,

and that
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00

(6) Z  I an — fln+i I   converges.
—00

Suppose also that1 the partial sums Y-n ane(nt) are uniformly bounded

for all real t. Then for any real irrational a the two series for f(x) in

(1) and (2) converge and have the same sum, and the limit relation (3)

holds.

In §3 we prove analogous results for the double series

A A   amane(my + nb)

-x -x   1 — xe(ma + ra/3)

where 1, a, B are linearly independent over the rationals. This

answers, at least partially, a question raised in [3].

2. Proof of the theorem. We observe first that the convergence of

the series for g(t) in (2) follows by partial summation from the first

hypotheses of the theorem, for any nonintegral t. Further, if

(8) gN(t) =   Z ane(nt),
\n\>N

partial summation gives

(9) | mo I <s(-v)IMh
where 8(N)—>0 as N—*co and \\t\\ denotes the distance from t to the

nearest integer.

The final hypothesis of the theorem now implies that g{t) is

bounded, so the first series in (2) converges for |x| <1. Moreover we

have

(10) | gN(t) |   < A

where A is independent of t and N (and similarly for Ai, ■ ■ ■ ,

later).

The first series in (2) is

oo /    N \

Z x" ( Z a„e(nva + ny) + gN(vct + 7) )
,=0 \ -N I

*       ane(ny) -
= Z,-;—r + 2^ x'gN(va A- y).

_j   1 - xe(na)       „=o

Hence to establish the convergence of the series (1), and its equality

1 This actually implies a„—>0, since it implies the convergence of > . | a» |2.
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with (2), it suffices to prove that

CO

zZ I x I" I gxivot +■ 7) I  —^ 0   as   N —» 00

for any given x with | x | < 1. Here each single term —»0 as N—»<x>, by

(9) if pa+7 is not an integer, and by the convergence of zZan H

va+y is an integer. Also, by (10),

ZZ  \x\"\ gniva + 7) |   < A-j—j- ,
v=h 1 —    I X I

and this is arbitrarily small if h is sufficiently large. Hence the result.

To prove the limit relation (3), we observe that the term n— — k

in (1) appears on the right of (3), and that any other single term is

bounded as r—*l, since a is irrational. Hence it suffices to prove that

if e>0 is given then

(11) E -£^<_1_
I„i>at 1 — reina + ka)        1 — r

ior any A> A0(e) and any r with r0(e) <r<l. The expression on the

left is

00

^ zZ r" I gNiva + y) |
v-0

OO

(12) < Ai zZ r" min(l, S(A)||m + 7||-»),

by (9) and (10).

We choose a large integer q for which

a       e
a =-1—, I e\  < 1.

q        q2

Write v = qu+v where u^0 and 0^v<q. Then

ll             ll         av                              ■"■
\\vct + 7|| >-h qau + y-

1 I

av + w(ra)         3
>->

q 2q

where wiu) is the integer nearest to q2au+qy. For given u, we define

v' (as a function of ») to be the absolutely least residue of av+wiu)
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modulo q. In the sum (12) we take 1 in the minimum if |»'| 5S2, and

find that the expression is

-        / *^   KN)q\
<AiYr"HS+2Y^J\)

«_0 \ ,'=3   v   — 2 /

< A2(l A-d(N)q log q)--
1 — r"

Hence (11) will hold provided that

A2(l A- S(N)q log q) < e(l + r + r2 + • • • + r'"1).

The right-hand side is greater than \tq if rq>\. We first choose q so

that A2<leq, then choose N0 so that A28(N) log q<\t for N>NQ,

then choose r0 so that rl>\. Then (11) holds, and this completes the

proof of (3).

3. The double series (7). The proofs of the analogous results, under

the hypotheses of the theorem, present no additional difficulty. We

have

00

Z x"g(va A- y)g(vB Ar 5)

«        »     amaae(my + nS)

=    l_      l_ --—— + ii + S2 - S3,
m=_iif n=-N 1 — xe(ma Ar nB)

where

Si = Y x'g(™ + y)gff("B + 0)
r—0

and 52 is a similar sum, and

00

S3 = Z x'gM(va Ar y)gx(vB + 5).
j—0

Since g(/) is bounded and gN(t) is uniformly bounded, and (as we

have already proved)

00

Z I x\'\ SN(va + 7)1 ~*0    as    #->«>,

it follows that the double series (7) converges and has the sum

Yx"g(vctA-y)g(pBAr8).
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As for the analogue of the limit relation, it suffices to prove that

ama„eimy + nb) e

m«x(|m|.|n|)>iV 1  ~ re(>raa + M/3 + ka + 18) 1   —  T

for A> A0(e) and r(1(e) <r <1. The double sum here can be expressed

again as Si+S2 — Sz, where x is now replaced by reika+lB), and now

M = N. Since git) is bounded and gwit) is uniformly bounded, the de-

sired estimate follows from what was proved in §2.

We can obviously replace an by bn in (7), provided the sequence 6„

satisfies the same conditions as an.
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