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1. Introduction and summary. All notation and terminology will

be as in [2]. In particular, all difference fields will be inversive differ-

ence fields of characteristic zero, and P((3) will denote the inversive

difference field generated by K and /3. Cl will denote the subfield of

L consisting of all constants of L, and Pl will denote the subfield of

L consisting of all periodic elements of L. If A7 is a difference overfield

of L then Cl L denotes the algebraic closure of L in N and Ln denotes

Cl [Z,(Cjv) ]. The Galois group of N over L is the set of difference auto-

morphisms of N leaving L fixed. We assume throughout that / is a

linear homogeneous difference equation of effective order ra, and that

M is a solution field for / over K with basis a = iaw, • ■ ■ , a(n)). A

reference to "the matrix of an automorphism" refers to its matrix with

respect to a.

If M is a Picard-Vessiot extension (PVE) of K, then M is contained

in a generalized Liouvillian extension (GLE) of K if and only if the

component of the identity of the Galois group of M over K is solvable

[2, Theorem 8]. However, there are equations of the form y2 = By

for which the Galois group of M over Km is commutative although

M is not a GLE of K (Example 1, below). This indicates that it is

not satisfactory from either the algebraic or analytic viewpoint to

consider / to be "solvable by elementary operations" only if a solu-

tion field for / is contained in a GLE of K. In §2 a necessary and

sufficient condition for the solvability of the Galois group in terms of

more general overfields called gLE is given. This yields a definition of

"solvability by elementary operations" which is acceptable at least

from the algebraic viewpoint.

In §3 the application of the theory of §2 is illustrated.

In §4 an example is given correcting an error in an example of [2].

The author would like to thank Professor Richard Cohn of Rutgers

University for his helpful comments on this paper. In particular Pro-

fessor Cohn pointed out the error, and suggested the correction which

appears in §4.

2. Solvability of the Galois group. The following example indicates

that GLE are not sufficient for the study of the "solvability" of linear

homogeneous difference equations.
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Example 1. Assume that K contains an element j with ji^j and

j,=j> and an element B with the following property. If Bk = PPi or

Bk = Pi/P for PEK then ft = 0. If a is any nonzero solution of F(y)

= y, — By then M = K(a) is a solution field for P with basis (a, ja).

Further, [2, p. 511], t.d. (M, K)=2, Cu — Ck and the Galois group

of M/K is commutative. We will show that M is not a GLE of K.

If M were a GLE of K then M would be a GLE of N = K(aai).

Since M is just the rational functions in a and ai over K, N is alge-

braically closed in M. If the first nontrivial step in the chain showing

that M is a GLE of N is NEN(@) then a is algebraic over N(B). If

the minimal equation of a over 7V(0) is akAr • • • 4"P = 0 then

P2 = P*P. Therefore ak/P is periodic and akEN{p). Since N{ak) CN(8)

there is an i with N{ak) = N{pi) [2, Propositions 5 and 6]. Since

aaiG7V<a*), N(ak) = N(ak). Also N(@i) = N^). Therefore there are

P, Q, R, SEN with

(1) ak = (P/3* 4- 0/(P/3' 4- 5).

We assume first that j3 satisfies an equation of the form yi = Py over

TV. By eliminating ak from (1) and its second transform, and equating

the coefficients of the resulting polynomial in jS to zero, one obtains

the following equations. PR2Bk = P2R and QS2Bk = Q2S. Since

akEN, P = 0 or P = 0, and Q = 0 or 5 = 0. In either case there is a

TEN and an integer j with ak=T^'. Therefore (o/i/ak) = (TiD'/T)

EN and ak, <x\EN. This contradiction completes the proof in this

case.

The second case, in which /3 satisfies an equation of the form

yi = y4-P over N can be handled similarly.

If q is a positive integer then a q-chain from K to N is a sequence of

fields

(2) K = Pi C K, E ■ ■ • C K, = N,       Ki+i = Kiifi^),

where /3<0 is one of the following.

(a) Algebraic over Kt.

(b) A solution to an equation yg = y4-P for some BEKi.

(c) A solution to an equation y, = ^4y for some AEKt.

If there is a g-chain from K to N then N is a qLE of K.

If P is a difference field with algebraic field F and transform r and j

is a positive integer then L(i) will denote the difference field with

algebraic field P and transform t'. In any discussion involving P and

L(i) the notation ^4i will mean t(A). We note that P^jS)

= L(B, /3j, • • • ) is contained in, but not always equal to, (L(P})<->>.

The relation between the concepts of gLE and GLE is given by the

following.
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Proposition 2.1. Assume that N is a difference overfield of K and q

is a positive integer. N is a qLE of K if and only if A(9) is a GLE of

Proof. Assume that A is a gLE of K with g-chain (2). For each

integer k, 0/P satisfies an equation of the same form as does |3(1) over

Ki, that is, an equation of one of the forms (a), (b) or (c). Therefore,

the chain

shows that iKiB™))™ is a GLE of A<">. Since (£</3<»»f«> is closed

under the transform of N, the proof can be completed by induction

on the length of the chain (2).

If A<«> is a GLE of K™ with chain

(3) 7C<«> C JT<«><7> C ■ ■ • C A"(8),

then K(y) is a gLE of K. Since K^(y)CiK(y))^\ JV<«> is a GLE of

(A(7))<9). Therefore, the proof can be completed by induction on the

length of the chain (3).

The following theorem is a generalization of Theorem 7 of [2]. Its

proof requires the following lemma for algebraic fields. Ft denotes the

/-dimensional affine space over F.

Lemma 1. Assume that A is a subfield of the field B and that M is a

subset of A t which is connected in the Zariski topology on A t. Then M

is connected in the Zariski topology on Bt.

Proof. If the lemma is false then there are sets of equations Si,

* = 1, 2, SiEB[x] =P[x(1), ■ • • , x(1)] with the following properties.

Each element of M annuls exactly one S;; M does not annul S,. If v

is a vector space basis of B over A then each fEB [x] can be written

uniquely in the form /= zZsu)vii) Ior gu)EA[x]. If Si is the set of

all such g(;) which appear when each fESi is so expressed, then an

element zEM annuls S' if and only if it annuls Si. This gives the

contradiction that M is not connected in the Zariski topology on A t.

Theorem 2.I.1 7/ K=KM, M is normal over K, and the Galois group

G of M/K is solvable then M is contained in a qLE of K.

Proof. Choose an algebraic closure P of Pu- Denote the algebraic

1 Added in proof. In [3] it is shown that if K = Km then if is a normal extension

of K.
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field of P by p. Since P is compatible with M we may define M*

= M(P) and K*=K(P). Each automorphism aEG extends to an

automorphism <r* of M*/K* [2, Proposition 9]. Define G* to be the

set of all such <r*. The set of matrices corresponding to G is identical

with the set of matrices corresponding to G*, so G* is connected in

the Zariski topology on pnXn by the preceding lemma. Therefore G*

is a solvable, connected, matrix group with entries in an algebraically

closed field and G* may be put in simultaneous triangular form.

Therefore there is a nonsingular matrix (b(-i-j)) with the property that

if j8(i) = X&(i,J>«(,) then for each o-*EG* there exist X'^GP so that

<r(j3Ci)) = '£l\(-i'i'lPU) where X(i'!) =0 if i<j. Further, if q is a common

period of the biiJ) then q is a period of each X(i,J').

If Ki = K(¥i'i)) then Pi is a gLE of K; we will show that Mi

= M{b(-i->>) is a gLE of Pi. Since &<*■•>> is nonsingular, Ki(a) = K~i{P).

Since Pi is algebraic over K and P is algebraically closed in M, Pi

and M are linearly disjoint over K. If o is a vector space basis of

Ki/K then each z E Mi can be written uniquely in the form

2= Xa(i)z,(i> Ior »(i)GAf- Therefore each automorphism aEG extends

to an automorphism <ri defined by eri(z) = ^Jff(a^i))v(-i). If Gi is the

set of all such extensions then the fixed field of Gi is Pi and Gi admits

the same triangular matrix representation as does G*.

We will show by induction on n that Mi is a gLE of Pi. For each

0-1GG1 there is a X("'n) with <n(^n)) = X("'n)fi;(,l). If 0(n)=O then the in-

ductive assumption applies. If ^"'f^O then 0*>/@in) is in the fixed

field of each <ri and /J(n) satisfies an equation of the form yt = Dy

over Pi. The proof may now be completed by a slight modification

of the proof of Proposition 7 of [2].

We note that the proof of Theorem 2.1 can be carried over to

differential algebra. Since, in this case, the &<*•* are constants one

obtains the following theorem for differential fields.

Theorem 2.1'. If M is generated from K by adjoining a fundamental

system for a linear homogeneous differential equation, K = Km, M is

normal over K, and the Galois group of M/K is solvable then M is con-

tained in a GLE of K.

The converse of Theorem 2.1 is a special case of the following gen-

eralization of Theorem 9 of [2]. The Galois groups referred to in

Theorem 2.2 are not associated with solution fields. Therefore, they

are not matrix groups.

Theorem 2.2. Assume that N is a qLE of K and that L is an inter-

mediate field. The Galois group G of L over K~l is solvable.
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Proof. Since G is isomorphic to a subgroup of the Galois group of

2,(8) over C1[A(Cl)](5) it is sufficient to consider the case where N is

a GLE of K. The proof is then the same as that of Theorem 9 of

[2], except that there L is assumed to be a solution field over K and

matrix groups are used. The proof may be modified by interpreting

the notation in the following way.

For "GiM, K)" read "the Galois group of M/K."

For "CiM, K)" read "the Galois group of Af/Cl K."

For UH<G" read "77 is isomorphic to a subgroup of G."

3. Application to second order equations. In this section we assume

that K is C(x), the rational functions over the complex numbers C

with xi = x+l, fiy)=y2-iA/D)yi-iB/F)y where A, B, D, F,
EC[x] and iA, D) = 1 = (P, F). Further, we assume that D and Pare

monic and (a, fi) is a basis for M over K. Lower case letters denote

degrees of corresponding polynomials.

Theorem 3.1 is an illustration of the application of the theory. The

theory is not complete since it is not known at present if there exists

a solution field L for / with L normal over Kl*

Lemma 2. If some solution to f is contained in a qLE of K then every

solution field for f is contained in a qLE of K.

Proof. Assume that a is contained in a gLE of K. If W = afii — «i/3

then Wi=-iB/F)W. Over K(a, W)f3 satisfies yi-y = (l47/a«i).

Therefore M is contained in a gLE of K. If L is any solution field for

/ over K then L and M are compatible and there is a set of constants

S with LiS) = Af(S) [2, Theorem 5].

Theorem 3.1. Assume that some solution field L for f is normal over

K l- If one of the following holds then no solution to f is contained in a

qLE of K.
(a) D = F=l,a>2b.

(b) A=B = l,d>f.
(c) The leading coefficients of A and B are real and of the same sign,

f>b, and a>f+2b+4d.

Proof. The computational details will be given for (a) only; (b)

and (c) can be proved similarly.

We will show first that a/fi is not periodic. For each integer t, f

determines a unique equation yt=A(t)yi + M(')y. If ia/r3)t = a/r3 then

A(()(ai|8—aft) =0 so Au)=0. However, from the recursion relation

2 Added in proof. In view of the previously noted result of [3], this comment is

no longer true, and the proof of Theorem 3.1 could be shortened slightly.
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A(2) A A(3) A   A H »((+1) ^  A (<>   _L    D    A ('-1)A     = A,    A     = AAi 4- Pi,    A = ALi    4" BXA.2

we find X(t+1)=o< and A(lV0.

If a solution to / is contained in a gLE of K then we may assume

that M is contained in a gLE of P and that M is normal over Km.

As in the proof of Theorem 2.1 there is a 2 X2 matrix 6(l,fl so that the

following holds. If M* = M(&*•») and K* = K{Vi-n) then there is-a

group G of difference automorphisms of M* over P* with fixed

field K*. Further, if oEG then there is a periodic element i with

(1) a(b»-» a A- &<2'2>/3) = i(b»-»a A- 6(2'2)/3).

We will now define an element y by cases.

Denote the matrix of a with respect to (a, /3) by C If &(2'1} =0 set

7=/3. Then 6«-«^0, so a($)=i{i and C(2'1)a-|-(C<2'2>-i)|3 = 0. Since

a/j3 is not periodic, i is constant. If for each aEG, C{2,1) =0, set -y =j8.

If ^'"^O and some C^'VO then (1) may be written as o-(aA-jfi)

= i(aArjf}). Define 7 = a4-j/3. Proceeding as above we obtain

ct*.»j* a- (c<2'2) - cu-vy - c(1-« = o

and

j2 - (C'1-1' 4- C<2'2)>' 4- C"-2^"'1' - c<2'l>C<''2> = 0.

Since * and j satisfy quadratics with constant coefficients they satisfy

y2=y. We note that in any case h=y2/y is left fixed by G.

From / we obtain

(2) 4y4 = (AAiA2A- AB2A- A2BAy2 - (A,BBAy

by transforming twice and eliminating odd order terms. Since y

satisfies (2), 5 satisfies

(3) AS82 = (AAiA2 A- AB, A- A2Bi)8 - A2BBX.

Since G leaves 5 fixed there is a set of constants U with 5 algebraic

over C(x, U). Since 52 can be expressed rationally in terms of 5, 5 has

no branch points and is rational in x. Writing 5 = P/Q where P and

Q are relatively prime in x, (3) becomes

APP2 = (AAiA, A- AB2 4- A,Bi)PQ, - A2BBiQQ,.

There are three possibilities.

1. aA-2p = 3a-\-pA-q.
2. aA-2p=aA-2bA-2q^3aA-pA-q.
3. 3aA-pA-q=aA-2bA-2q.
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Since P\A2BBiQ2 and Q2\AP, p^a + 2b+q and q^a+p. The former

contradicts 1, the latter 3, and 2 is inconsistent.

4. Nonisomorphic solution fields. Example 7 of [2] is incorrect in

that the fields K(a, g) and K(a, h) defined there are actually iso-

morphic. The example may be corrected by defining h by h\ = — (^4 +1),

ht = h. The field K(h) contains a subfield, Ki}i, h\), of genus one, while

K(g) is of genus zero. K{a, g) and K(a, h) are not transformally iso-

morphic since a difference isomorphism between them would induce

an isomorphism of K{g) and A(/t).

It is interesting to note that K(h) contains a subfield isomorphic

to K(g), namely the subfield generated by /?4 + (l/2).
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