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It was shown by V. N. Sudakov [7] that a locally convex topologi-

cal linear space with a nontrivial quasi-invariant <r-finite measure

on its weakly measurable sets must be finite-dimensional. Sudakov's

ingenious proof uses a theorem of Ulam [6, Footnote 3]. In some un-

published notes [8], Y. Umemara attempted to prove the same

theorem, by utilizing Weil's "converse to the existence of Haar

measure" [9, Appendix 1]. Umemara's proof was incorrect. However,

the approach seemed a natural one. In the present article Weil's

theorem will be utilized to prove a more general nonexistence theo-

rem, from which Sudakov's theorem may immediately be deduced,

but which also covers the case of a Borel measure on any metrizable

linear space; for example, the equivalence classes of measurable func-

tions on a measure space.

Thanks are due to R. Dudley and J. Mermin for patient and criti-

cal listening, and to C. C. Moore for contributing an essential step

to an earlier version of the proof. 7? will always denote the real line,

and T the unit circle in the complex plane.

Theorem 1. Let Y be a locally compact abelian group, which is also

a real vector space. Assume that for each real a and each y in the char-

acter group Y of Y, the map y—>5>(ay) is continuous. Assume also that

the map a—^^iay) is measurable, using Lebesgue measurable sets in R

and Baire sets in T. Then Y is finite-dimensional.

Proof, a—^yiay) is a homomorphism from 7? under addition to T

under multiplication. The measurability assumption makes it con-

tinuous, by [4, Theorem 9.3.1]. Then, by [2, Corollary 2.1], a—>ay

is continuous. It follows that Y is connected, since each y may be

connected to 0 by the curve ay.O^a^l. We may define a$ by the

equation (<xy)(y) =y(ay). Then a—>ay is likewise continuous, and so

an analogous argument shows that Y is connected. But connected-

ness of Fsays there is an isomorphism i= Y—*RnXC, Ccompact: see

[9, p. 110]. So I: Y<^-RnXC. Now, Rn is just Rn, and C is discrete.

The only way that RnXC can be connected, therefore, is for C to

consist of one element, and consequently likewise for C. So i: Y—*Rn.

Received by the editors May 11, 1964 and, in revised form, June 5, 1964.

1 Written with partial support from NSF Contract GP-2.

142



NONEXISTENCE OF QUASI-INVARIANT MEASURES 143

The map is automatically a linear space isomorphism over the ra-

tional, that is i(ry) =r(iy) for rational rER- But then continuity im-

plies i(ay) =ai(y) for each aER-

Example 1. Let Rd be the discrete reals. Their dual, Rd, otherwise

known as the Bohr group, is of course compact. R4 is a vector space,

under the dual operation to the obvious scalar multiplication in 7?^.

Rd is an infinite-dimensional vector space, and also a compact abelian

group. The scalar operations are homeomorphic automorphisms of

R4. However, if y^O in 7^, the map a-^ay is not measurable, so this

does not contradict Theorem 1.

Theorem 2. Let X be a real linear space, and S a a-ring of subsets.

Assume

(1) x—*ax is measurable for each aER-

(2) a—>>ax is measurable for each xEX (with respect to Lebesgue

measurable sets in R).

(3) (x, y)—>x+y is measurable, using the ordinary product a-ring in

XXX.
Note that (3) implies measurability of x—>x-f-y, for each yEX. Assume

also the existence of a nonzero a-finite and separable measure u on S

such that

(4) u(S) =0=>u(S+x) =0, for each 5G§ and xEX, i.e. /1 is quasi-

invariant.

(5) If X5^0 then 35G§ such that the symmetric difference of S and

S+x has positive u-measure.

Conclusion. X is finite-dimensional.

Proof. First: there is actually a translation-invariant tr-finite

measure on S, equivalent to u. This is not difficult to see directly, but

is also a special case of [5, Lemma 7.3]. Furthermore, the invariant

measure is unique, up to a constant multiple. This can be seen as fol-

lows.

Let a, (8 be a-finite invariant measures on S. We may assume

a-</3. Then f = da/dp is translation-invariant, up to /8-null sets. We

show/ is constant |8-a.e. For let S= (x:/(x) <a\.

Let dy = lsxdfi. Then, since 5 is invariant up to /3-null sets, y is

an invariant measure.

Now, 7(5) =0, so 7(5-x)=0 for all x, and 0=fy(S-x)d$(x)

=ffls(y+x)dy(y)dfl(x). By Fubini, ls(y4-x) is 0 /3-a.e.,for 7-a.e. y.
So either 7 is the zero measure (in which case Sx is /3-null), or else 3y

such that (i(S—y) =0, so S is /3-null. That is, either {x:/(x) <a} or

{x:/(x) ^a} is null.

Hereafter, then, we denote by p this unique (up to constant multi-
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pie) o--finite invariant measure on S. Weil's theorem, which we utilize

in the form given in [3, §62], tells us that there is a canonical uni-

formity u on X such that the completion Y of X in this uniformity is

a locally compact group. Denoting by (B the Baire sets of Y, we also

have S3©| X, and o-(75) =piB(~\X) is a Haar measure on ($>. X being

abelian, Y is likewise.

Let 4>a be the map x-^ax from X to X. Then p o <j>~x is easily seen

to be again an invariant measure, hence is a constant multiple of p.

So the uniformity induced by p o^"1 is the same as that induced by

p, and consequently <pa extends to a homeomorphic automorphism

** of Y.
Separability of p, implies separability of p, which in turn implies

separability of a. I claim this implies that Fhas a countable complete

neighborhood base at 0. For let 73i, B2, ■ ■ ■ be a sequence of sets of

finite measure in (B which generate (B up to rr-null sets. Then an

examination of the definition of the topology in Y shows that

| <x: o-HBn + x)ABn) < — > : n, m = 1, 2, • • • 1

is a complete system of open neighborhoods of zero in Y.

Thus, for each yEY there is a sequence xi, x2, ■ ■ ■ in X with

xn—*y (since X is dense in Y). Consequently, if fEY, y(i/'o(y))

= :y#a(limB,M xn)) =y(lim„,M^fl(x„)) =limn^M jiaxn).

Now, the embedding from X into Y is measurable from S into (B;

consequently, a—>y(ax„) is measurable from the Lebesgue-measurable

sets in 7? to the Baire sets in T. Thus, the same holds for their point-

wise limit a—^OWy))- The map a—*\f/aiy) is now easily seen to make

Y into a vector space satisfying the assumptions of Theorem 1, so Y

is finite-dimensional, and so is its vector subspace X.

Corollary. Let X be a metrizable topological linear space. Let there

be a nontrivial a-finite quasi-invariant measure v on the Borel sets of X.

Then X is finite-dimensional.

Proof. We may assume that v has total mass 1. Notice that if 5

is any open neighborhood of zero, then U„°_i nS = X, so j»(»S)>0 for

some ra. Consequently, zZn-i (l/2")j'(raS)>0. Now define a Borel

measure vn by v„iB) =vinB). This makes sense, since «73 is Borel for

any Borel set B, because of continuity of the map a;—>(l/w)x. Fur-

thermore, vn is quasi-invariant. Define p.(73) = zZn-i (l/2n)vn(B).

Then p, is again a quasi-invariant Borel measure, viX) =1, and p(S)

>0 for any open neighborhood of zero. It will be shown that X, its
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Borel sets, and p, satisfy the condition of Theorem 2.

(1), (2) and (4) are already clear. (5) may be seen as follows: if

x?^0, then choose an open neighborhood 5 of 0 with x(£S — S. Then

5 is disjoint from 5H-x, so (5) is satisfied. It remains to show that ju is

separable, and that (x, y)—*x+y is product-measurable. These will

both follow if it can be shown that X is a separable metric space,

which we do by exhibiting a countable dense subset.

Let 5B(x) be the open 1/w-sphere about x, in some fixed metric.

Then for some countable family CnQX, Uiec„ Sn(x) contains X up

to a set of measure 0, since each S„(x) has positive measure. So, let-

ting C = U„°_i Cn, it follows that, for each n, Uxec Sn(x) contains X

up to a set of measure zero.

I claim C is dense. For if y is not in the closure of C, then 3« such

that Sn(y)r\C = 0, hence S2n(y)r\UxeC S2n(x) = 0. But S2n(y) has

positive measure; contradiction.

Remark. The corresponding result for locally convex topological

linear spaces easily reduces to the metrizable case, in fact to the case

where the dual space is countably-dimensioned.

Example 2. The results of Elliott and Morse in [l] make the

following construction possible.

Let X be a countable product of real lines, and S the usual o*-ring

generated by the cylinders over finite-dimensional Baire bases. Then

there is a measure p on S such that if A„ is a Baire set on the real

line, and the products of the Lebesgue measures of the An form an

infinite product converging to the number a, then {x:xiG-4i,

X2G-42, • ■ • } is given measure a by the measure p-p is an invariant

measure, and all assumptions of Theorem 2 are satisfied, except those

of separability and cr-finiteness of the measure. In fact, X cannot be

embedded as a thick subgroup of a locally compact topological group;

for suppose it were. Let E be x: 0 ^x„ ^ 1 for all n}; then p(P) = 1,

and 7V= {x: p(PA(P4-x)) <l/4} is a neighborhood of zero in the

induced topology, but 7VC {x: | xn| < 1/4 for all n), so TV is a subset

of a set of measure zero, contradicting the assumption that X is thick.

"Thick" is used here as in [3, p. 275].
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A NOTE ON THE RECURSIVE UNSOLVABILITY OF
PRIMITIVE RECURSIVE ARITHMETIC

RICHARD E. GRANDY1

We wish to show the recursive unsolvability of primitive recursive

arithmetic (PRA). By PRA we mean a quantifier-free formal system

of arithmetic which has expressions for all primitive recursive func-

tions. In such a system all valid variable free formulas are provable

and both of the Godel incompleteness theorems hold. Further, we

may define in the system bounded quantifiers and (for a suitable

Godel numbering) the following primitive recursive functions: th(x),

a function which enumerates the Godel numbers of theorems of PRA,

and sub(ra, m), the function whose value is the Godel number of the

formula obtained by replacing the first variable in alphabetic order

by the numeral ra through the formula number m.2

If there is a recursive decision procedure for PRA, then the set of

Godel numbers of nontheorems is recursively enumerable. But if a set

is recursively enumerable then it is primitive recursively enumerable.

Thus if PRA is solvable there is a primitive recursive function whose

range is precisely the set of Godel numbers of nontheorems.

Assume there exists such a function /. Consider the formula

(1) th(x) = sub(x0, xo) D iEz). z ^ x &/(z) = sub(x0, x0).
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